

第1章图的基本概念

程龚 南京大学 计算机科学与技术系 gcheng@nju.edu.cn http://ws.nju.edu.cn/~gcheng

本章内容

- 第1.1节图的定义
- 第1.2节图的表示
- 第1.3节图的关系
- 第1.4节 图的运算

本章内容

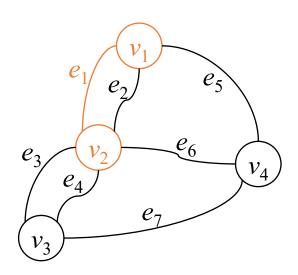
- 第1.1节 图的定义
- 第1.2节图的表示
- 第1.3节图的关系
- 第1.4节 图的运算

图、顶点、边、端点

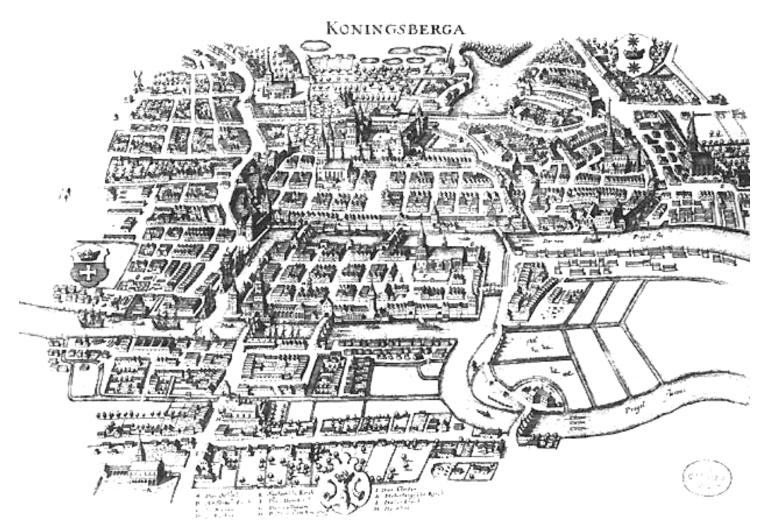
■ 图: 二元组*G* = <*V*, *E*>

V: 顶点 (结点) 的有限集合E: 边的有限集合

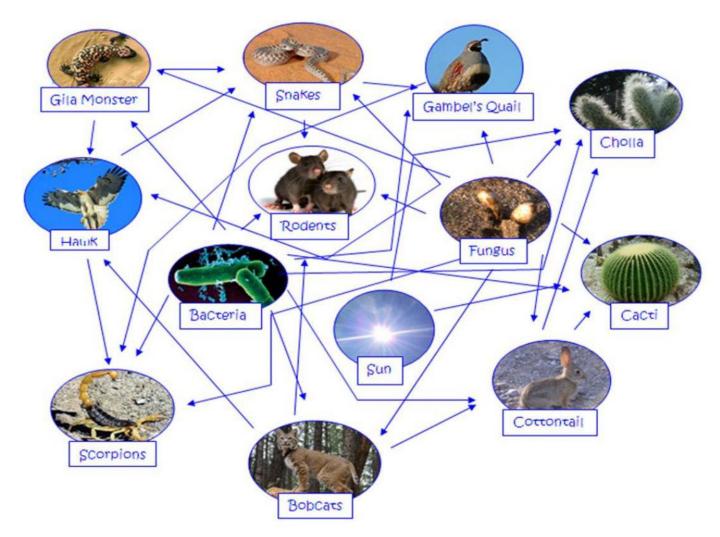
• 例如: $be_1 = (v_1, v_2) \ge V$ 中顶点 $v_1 = v_2$ 组成的无序对, $v_1 = v_2$ 称作 $v_1 = v_2$ 的两个端点



日常生活中的图: 路网

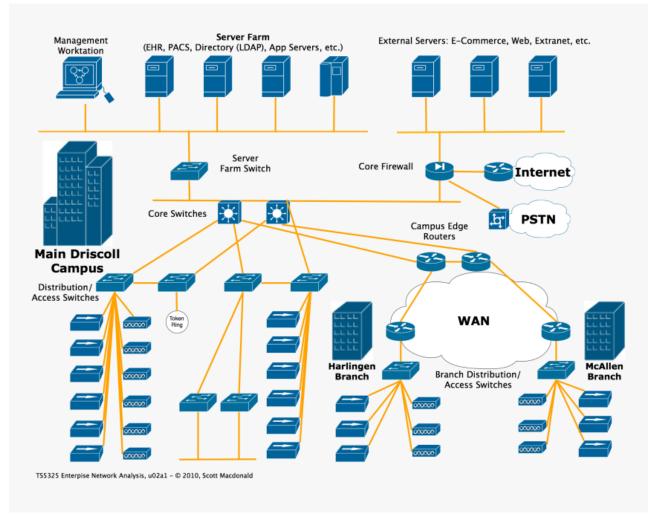


日常生活中的图: 食物链

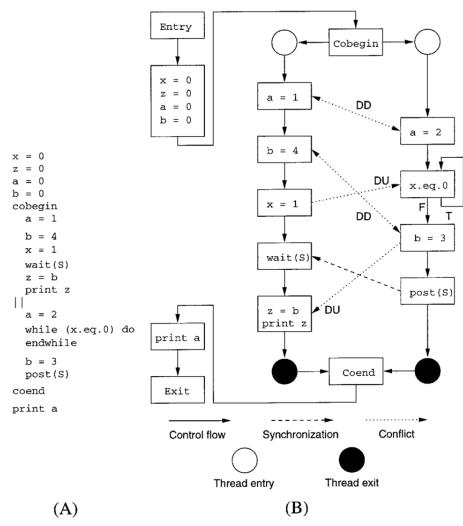


日常生活中的图: 互联网

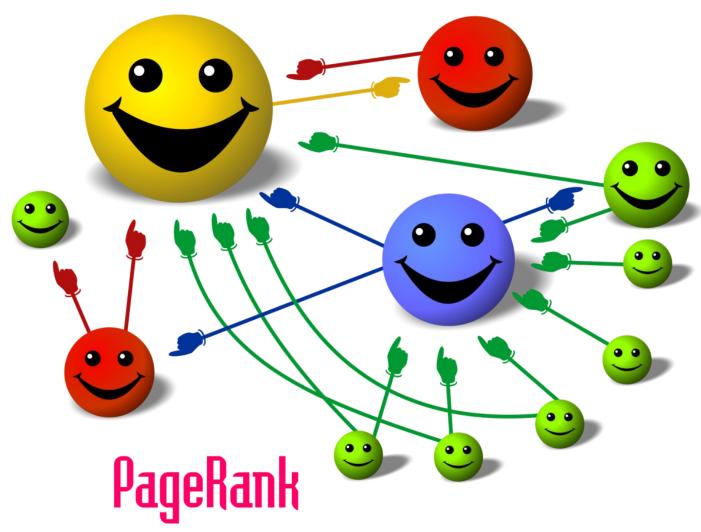
计算机专业的图: 计算机网络



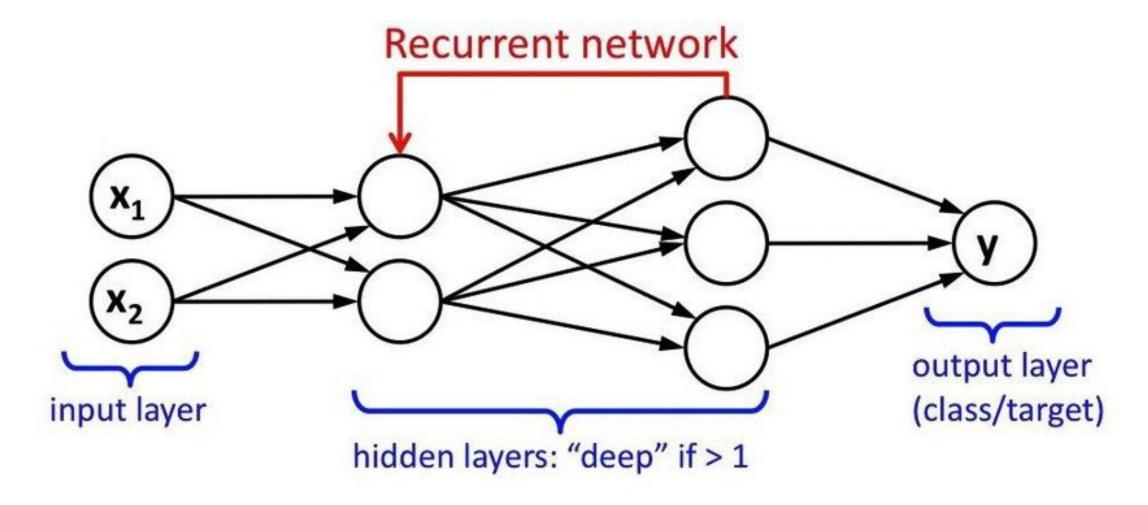
计算机专业的图:控制流图



计算机专业的图: 万维网



计算机专业的图: 神经网络

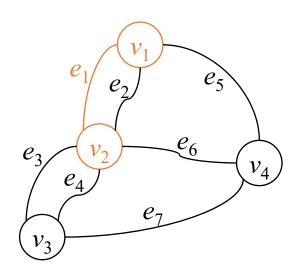


计算机专业的图

■ 你能自己举个例子吗?

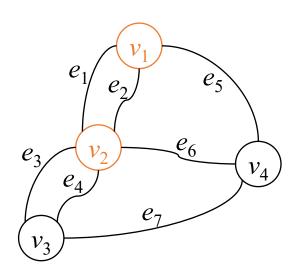
关联

- 边和它的端点互相<mark>关联</mark>
 - 例如: e_1 关联 v_1 和 v_2 , v_1 和 v_2 都关联 e_1



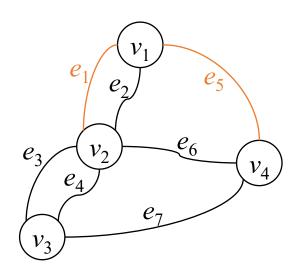
相邻、邻点

- 一条边的两个端点称作<mark>相邻</mark>,它们互为**邻点**
 - 例如: v₁和v₂



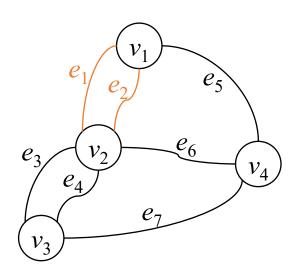
相邻、邻点

- 一条边的两个端点称作相邻,它们互为邻点
 - 例如: v₁和v₂
- 有公共端点的两条边也称作<mark>相邻</mark>
 - 例如: e₁和e₅



重边

- 端点完全相同的两条边称作**重边**(平行边)
 - 例如: $e_1 = (v_1, v_2)$ 和 $e_2 = (v_1, v_2)$



重边

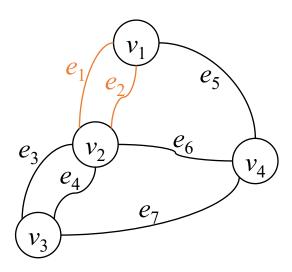
■ 端点完全相同的两条边称作重边(平行边)

• 例如: $e_1 = (v_1, v_2)$ 和 $e_2 = (v_1, v_2)$

■ 图: 二元组*G* = <*V*, *E*>

V: 顶点(结点)的有限集合

E: 边的有限集合



多重集

■ 端点完全相同的两条边称作重边(平行边)

• 例如: $e_1 = (v_1, v_2)$ 和 $e_2 = (v_1, v_2)$

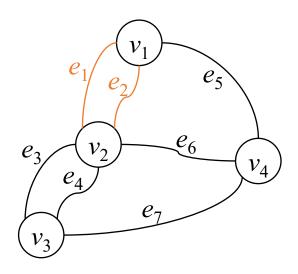
■ 图: 二元组*G* = <*V*, *E*>

V: 顶点(结点)的有限集合

E: 边的有限集合 需要扩展图的数学表示

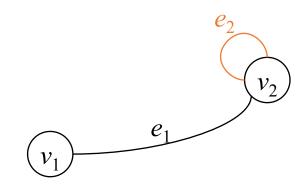
多重集: 允许元素重复出现

● 例如: {(v₁, v₂), (v₁, v₂)}



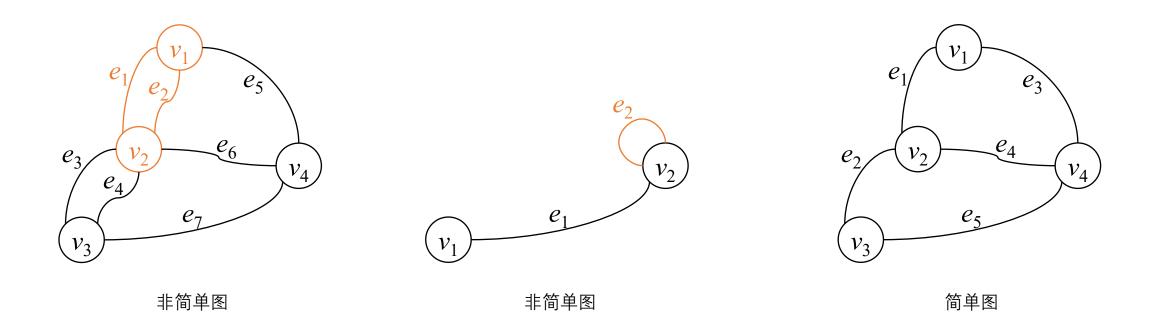
自环

- 两个端点是同一个顶点的边称作**自环**
 - 例如: $e_2 = (v_2, v_2)$



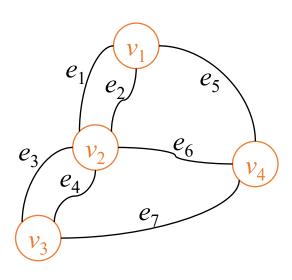
简单图

■ 不含自环和重边的图称作<mark>简单图</mark>



阶、零图

- 图 $G = \langle V, E \rangle$ 的顶点数量|V|称作G的M,记作v(G)
 - 例如: v(G) = 4

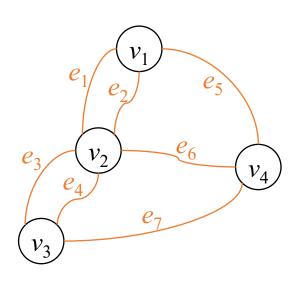


阶、零图

- 图 $G = \langle V, E \rangle$ 的顶点数量|V|称作G的阶,记作v(G)
 - 例如: v(G) = 4
- 阶为0的图称作零图
 - 若无特殊说明,我们讨论的图都是非零图

边数、空图、平凡图

- 图 $G = \langle V, E \rangle$ 的边的数量|E|称作G的边数,记作 $\varepsilon(G)$
 - 例如: ε(G) = 7



边数、空图、平凡图

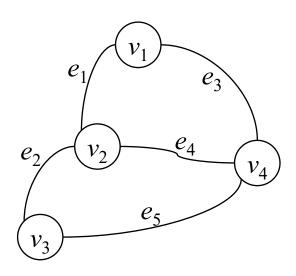
- 图 $G = \langle V, E \rangle$ 的边的数量|E|称作G的边数,记作 $\varepsilon(G)$
 - 例如: ε(G) = 7
- 边数为0的图称作空图

边数、空图、平凡图

- 图 $G = \langle V, E \rangle$ 的边的数量|E|称作G的边数,记作 $\varepsilon(G)$
 - 例如: ε(G) = 7
- 边数为0的图称作空图
- 只有1个顶点的空图称作平凡图

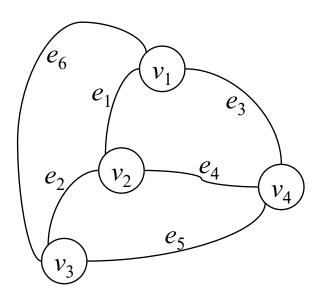
思考题1.1

■ 阶为*n*的简单图的边数的上界是多少?



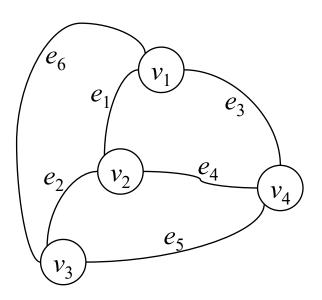
思考题1.1

- 阶为*n*的简单图的边数的上界是多少?
 - \bullet $\binom{n}{2}$



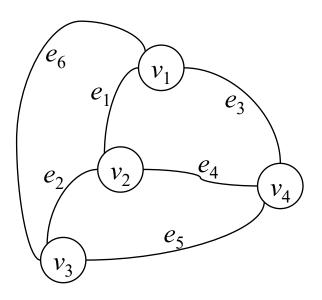
完全图

- \blacksquare 若一个简单图中的每对顶点都相邻,则这种简单图称作**完全图** 阶为n的完全图记作 K_n
 - 例如: K₄



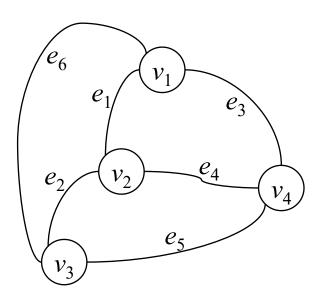
思考题1.2

■ 完全图 K_n 的边数是多少?



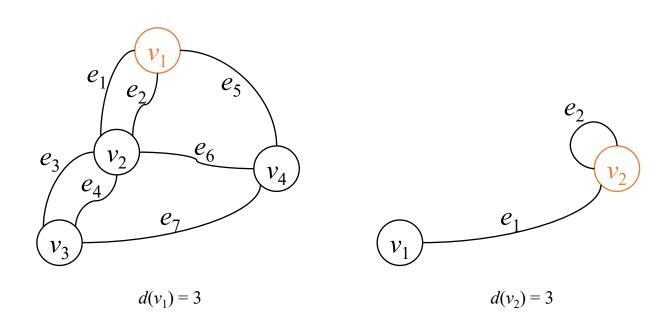
思考题1.2

- 完全图 K_n 的边数是多少?
 - \bullet $\binom{n}{2}$



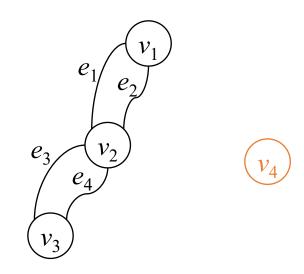
度、孤立点

- 顶点v关联的边的数量称作v的度, 记作d(v)
 - 关联的每个自环按2次计数



度、孤立点

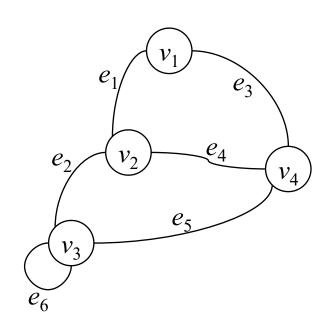
- 顶点v关联的边的数量称作v的度,记作d(v)
 - 关联的每个自环按2次计数
- 度为零的顶点称作<mark>孤立点</mark>



定理1.1

■ 对于任意一个图 $G = \langle V, E \rangle$, 顶点集V中所有顶点的度的和等于G的边数的2倍:

$$\sum_{v \in V} d(v) = 2 \cdot \epsilon(G)$$

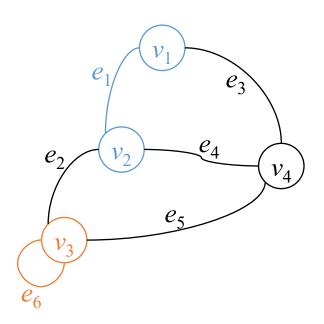


定理1.1

■ 对于任意一个图 $G = \langle V, E \rangle$, 顶点集V中所有顶点的度的和等于G的边数的2倍:

$$\sum_{v \in V} d(v) = 2 \cdot \epsilon(G)$$

- 自环对等式两侧的贡献?
- 非自环边对等式两侧的贡献?

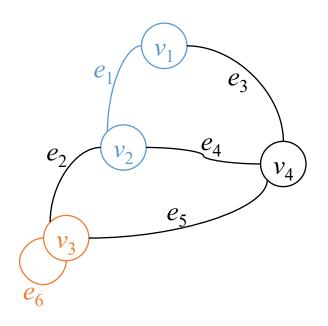


定理1.1

■ 对于任意一个图 $G = \langle V, E \rangle$, 顶点集V中所有顶点的度的和等于G的边数的2倍:

$$\sum_{v \in V} d(v) = 2 \cdot \epsilon(G)$$

- 自环对等式两侧的贡献: 均为2
- 非自环边对等式两侧的贡献: 均为2

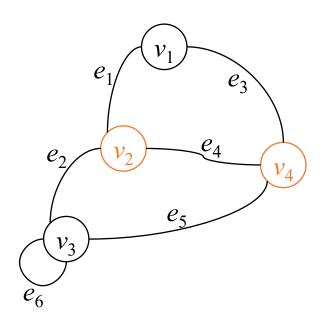


推论1.1

■ 对于任意一个图 $G = \langle V, E \rangle$, 顶点集V中所有顶点的度的和等于G的边数的2倍:

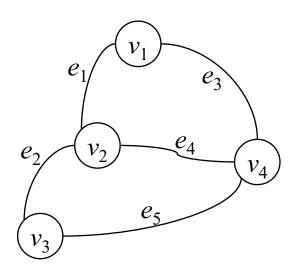
$$\sum_{v \in V} d(v) = 2 \cdot \epsilon(G)$$

■ 任意一个图中,度为奇数的顶点有偶数个。



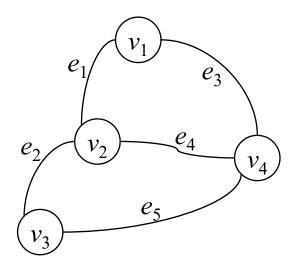
度序列、最大度、最小度

- 图G中所有顶点的度组成的非增序列称作G的E序列
 - 例如: 3,3,2,2

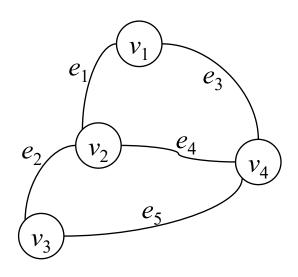


度序列、最大度、最小度

- 图*G*中所有顶点的度组成的非增序列称作*G*的度序列
 - 例如: 3,3,2,2
- 度序列中的最大值称作G的最大度,记作 $\Delta(G)$
 - 例如: △(G) = 3
- 度序列中的最小值称作G的最小度,记作 $\delta(G)$
 - 例如: $\delta(G) = 2$



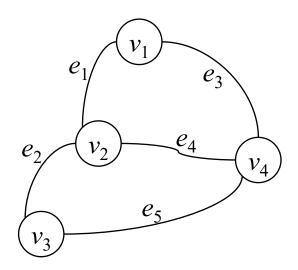
■ 证明: 阶至少为2的简单图中, 至少有2个顶点的度相等。



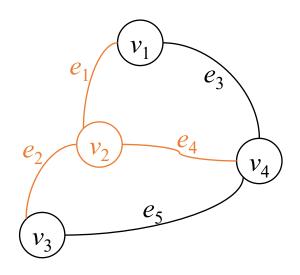
- 证明: 阶至少为2的简单图中, 至少有2个顶点的度相等。
 - 若所有顶点的度都不相等,则只能是哪种情况? 这种情况自身存在什么矛盾?



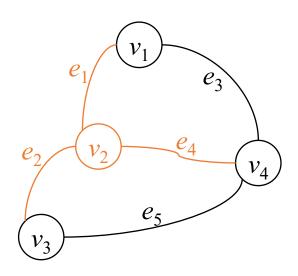
- 证明: 阶至少为2的简单图中, 至少有2个顶点的度相等。
 - 若所有顶点的度都不相等,则只能是哪种情况? 这种情况自身存在什么矛盾?
 - 对于阶为n的简单图,每个顶点的度的范围为从0到n-1
 - 不能同时存在度为0的顶点和度为n-1的顶点



■ 对于阶至少为2的图G,从G中删除度最大的一个顶点及其关联的所有边,G中顶点的度的平均值有可能提高、不变,还是降低?

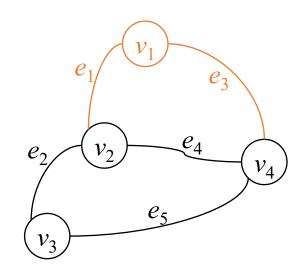


- 对于阶至少为2的图G,从G中删除度最大的一个顶点及其关联的所有边,G中顶点的度的平均值有可能提高、不变,还是降低?
 - 有可能降低

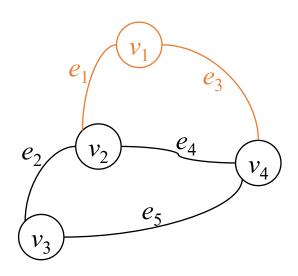


- 对于阶至少为2的图G,从G中删除度最大的一个顶点及其关联的所有边,G中顶点的度的平均值有可能提高、不变,还是降低?
 - 有可能降低
 - 有可能不变

■ 对于阶至少为2的图G,从G中删除度最小的一个顶点及其关联的所有边,G中顶点的度的平均值有可能提高、不变,还是降低?

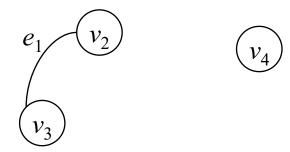


- 对于阶至少为2的图G,从G中删除度最小的一个顶点及其关联的所有边,G中顶点的度的平均值有可能提高、不变,还是降低?
 - 有可能降低

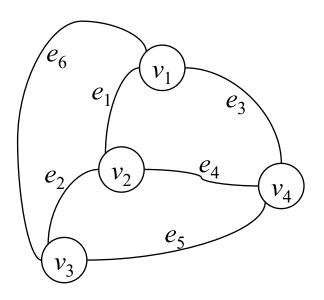


- 对于阶至少为2的图G,从G中删除度最小的一个顶点及其关联的所有边,G中顶点的度的平均值有可能提高、不变,还是降低?
 - 有可能降低
 - 有可能不变

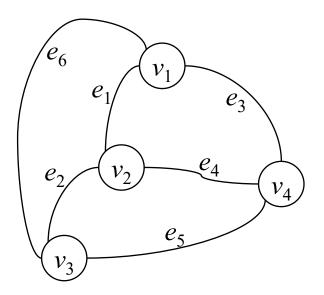
- 对于阶至少为2的图G,从G中删除度最小的一个顶点及其关联的所有边,G中顶点的度的平均值有可能提高、不变,还是降低?
 - 有可能降低
 - 有可能不变
 - 有可能提高



■ 什么样的图的最大度和最小度相等?

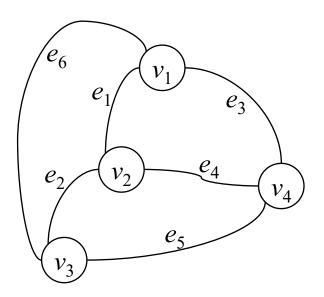


- 什么样的图的最大度和最小度相等?
 - 所有顶点的度都相等

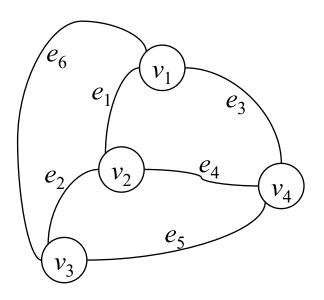


正则图

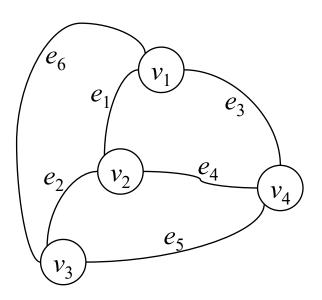
- 所有顶点的度都为r的图称作r正则图
 - 例如: *K*₄是3正则图



■ 阶为*n*的*r*正则图的边数是多少?



- 阶为*n*的*r*正则图的边数是多少?
 - $\frac{nr}{2}$



请认真完成课后练习

