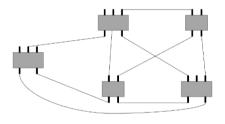


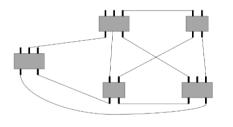
第10章 平面

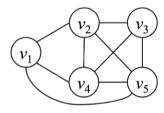
程龚

电路版图设计问题

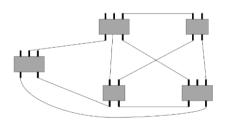


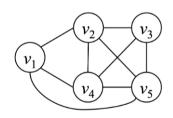
电路版图设计问题

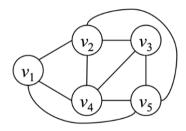




电路版图设计问题







本次课的主要内容

10.1 可平面图

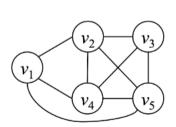
10.2 面的染色

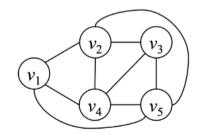
本次课的主要内容

10.1 可平面图

10.2 面的染色

- 在平面上的**画法**
 - 单射函数dr: 将顶点 $v \in V$ 映射到平面上的坐标点dr(v)将边 $(u,v) \in E$ 映射到平面上的dr(u)-dr(v)曲线

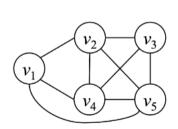


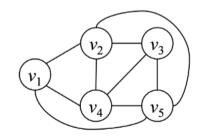


- 在平面上的画法
 - 单射函数dr: 将顶点 $v \in V$ 映射到平面上的坐标点dr(v)将边 $(u, v) \in E$ 映射到平面上的dr(u)-dr(v)曲线

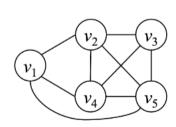
■ 可平面图

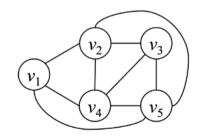
- 任意两条边映射到的平面曲线不交叉 (没有除端点外的公共坐标点)
- 平面嵌入: 画法■ 平面图: 映射到平面上的结果



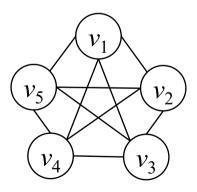


- 在平面上的画法
 - 单射函数dr: 将顶点 $v \in V$ 映射到平面上的坐标点dr(v)将边 $(u, v) \in E$ 映射到平面上的dr(u)-dr(v)曲线
- 可平面图
 - 任意两条边映射到的平面曲线不交叉 (没有除端点外的公共坐标点)
 - 平面嵌入:画法平面图:映射到平面上的结果
- 不可平面图

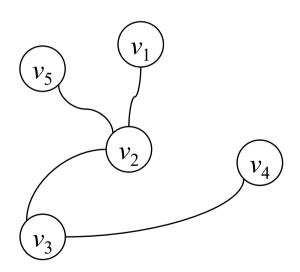




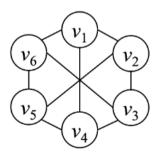
■ 完全图 K_1, K_2, K_3, K_4, K_5 是可平面图吗?



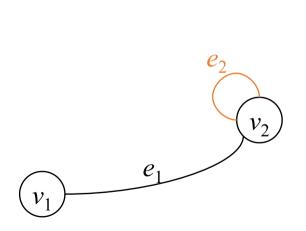
- 完全图 K_1, K_2, K_3, K_4, K_5 是可平面图吗?
- 树是可平面图吗?

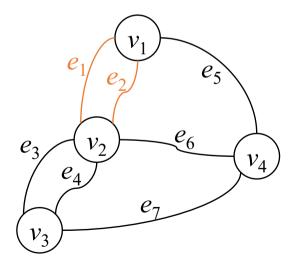


- 完全图 K_1, K_2, K_3, K_4, K_5 是可平面图吗?
- 树是可平面图吗?
- 完全二分图 $K_{1,1}, K_{2,2}, K_{3,3}$ 是可平面图吗?



- 完全图 K_1, K_2, K_3, K_4, K_5 是可平面图吗?
- 树是可平面图吗?
- 完全二分图 $K_{1,1}, K_{2,2}, K_{3,3}$ 是可平面图吗?
- 自环和重边影响图的可平面性吗?





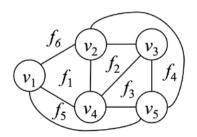
- 完全图 K_1, K_2, K_3, K_4, K_5 是可平面图吗?
- 树是可平面图吗?
- 完全二分图 $K_{1,1}, K_{2,2}, K_{3,3}$ 是可平面图吗?
- 自环和重边影响图的可平面性吗?
- 可平面图的子图是可平面图吗?

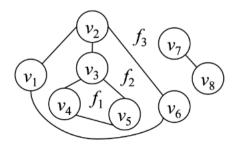
- 完全图 K_1, K_2, K_3, K_4, K_5 是可平面图吗?
- 树是可平面图吗?
- 完全二分图 $K_{1,1}, K_{2,2}, K_{3,3}$ 是可平面图吗?
- 自环和重边影响图的可平面性吗?
- 可平面图的子图是可平面图吗?
- 完全图 K_6 和完全二分图 $K_{4.4}$ 是可平面图吗?

- 完全图 K_1, K_2, K_3, K_4, K_5 是可平面图吗?
- 树是可平面图吗?
- 完全二分图 $K_{1,1}, K_{2,2}, K_{3,3}$ 是可平面图吗?
- 自环和重边影响图的可平面性吗?
- 可平面图的子图是可平面图吗?
- 完全图 K_6 和完全二分图 $K_{4,4}$ 是可平面图吗?
- 若图*G*的所有连通分支都是可平面图,则*G*是可平面图吗?

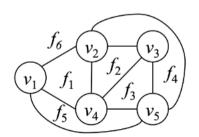
■ 面

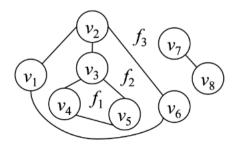
• 平面图将平面分隔出的极大相连区域(不含平面图自身)



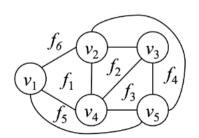


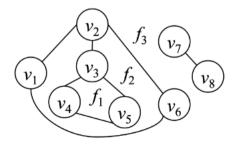
- 面
 - 平面图将平面分隔出的极大相连区域(不含平面图自身)
- 无限面 (外部面)
 - 面积无限的面





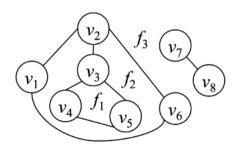
- 面
 - 平面图将平面分隔出的极大相连区域(不含平面图自身)
- 无限面(外部面)
 - 面积无限的面
- 有限面 (内部面)
 - 面积有限的面





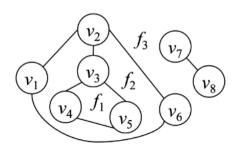
- 面
 - 平面图将平面分隔出的极大相连区域(不含平面图自身)
- 无限面(外部面)
 - 面积无限的面
- 有限面 (内部面)
 - 面积有限的面
- 面数
 - 面的数量,记作 $\varphi(H)$





- 面
 - 平面图将平面分隔出的极大相连区域(不含平面图自身)
- 无限面(外部面)
 - 面积无限的面
- 有限面(内部面)
 - 面积有限的面
- 面数
 - 面的数量,记作 $\varphi(H)$
- 平面图可以有多少个无限面?



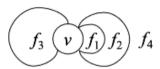


■ 对于任意一个连通图G的平面图H: $v(G) - \varepsilon(G) + \varphi(H) = 2$

- 对于任意一个连通图G的平面图H: $v(G) \varepsilon(G) + \varphi(H) = 2$
 - 采用数学归纳法, 对v(G)归纳
 - v(G) = 1 时:

• 假设v(G) = k时成立,则v(G) = k + 1时:

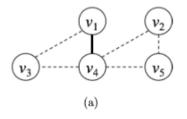
- 对于任意一个连通图G的平面图H: $v(G) \varepsilon(G) + \varphi(H) = 2$
 - 采用数学归纳法, 对v(G)归纳

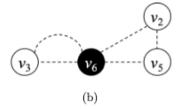


• 假设v(G) = k时成立,则v(G) = k + 1时:

- 对于任意一个连通图G的平面图H: $v(G) \varepsilon(G) + \varphi(H) = 2$
 - 采用数学归纳法, 对v(G)归纳
 - v(G) = 1时:

 假设v(G) = k时成立,则v(G) = k + 1时: 收缩一条非自环边





■ 对于任意一个有w个连通分支的图G的平面图H: $v(G) - \varepsilon(G) + \varphi(H) = w + 1$

■ 对于任意一个有w个连通分支的图G的平面图H: $v(G) - \varepsilon(G) + \varphi(H) = w + 1$

$$w \cdot 2 = \sum_{i=1}^{w} \nu(G_i) - \epsilon(G_i) + \phi(H_i)$$
$$= \sum_{i=1}^{w} \nu(G_i) - \sum_{i=1}^{w} \epsilon(G_i) + \sum_{i=1}^{w} \phi(H_i)$$

■ 对于任意一个有w个连通分支的图G的平面图H: $v(G) - \varepsilon(G) + \varphi(H) = w + 1$

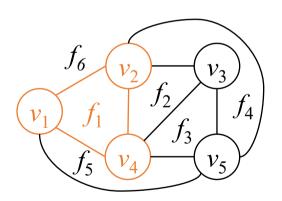
$$w \cdot 2 = \sum_{i=1}^{w} \nu(G_i) - \epsilon(G_i) + \phi(H_i)$$

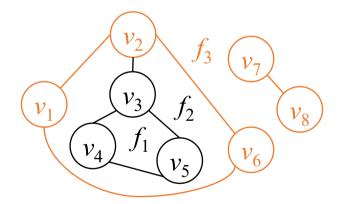
$$= \sum_{i=1}^{w} \nu(G_i) - \sum_{i=1}^{w} \epsilon(G_i) + \sum_{i=1}^{w} \phi(H_i)$$

$$= \nu(G) - \epsilon(G) + (\phi(H) + (w - 1)),$$

■ 面的**边界**

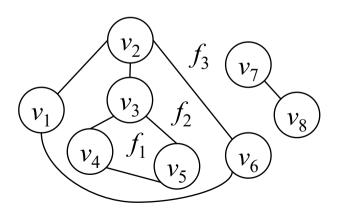
• 在平面上相邻的坐标点对应的顶点和边形成的子图



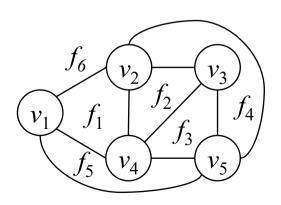


■ 什么样的边在两个面的边界中? 什么样的边只在一个面的边界中?

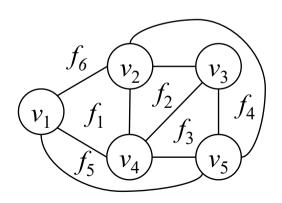
14-1-1-1



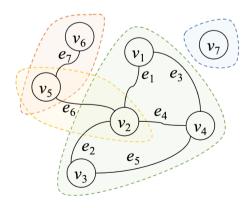
- 什么样的边在两个面的边界中? 什么样的边只在一个面的边界中?
- 平面图的两个不同的面的边界可以完全相同吗?



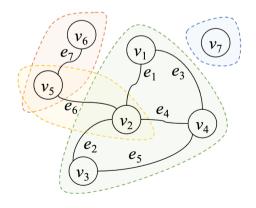
- 什么样的边在两个面的边界中? 什么样的边只在一个面的边界中?
- 平面图的两个不同的面的边界可以完全相同吗?
- 对于任意一个图的平面图(面数至少为2)的无限面, 你能找到该图的另一个平面图的有限面, 使两个面的边界是相同的子图吗?反之能吗?

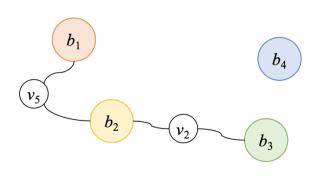


- 什么样的边在两个面的边界中? 什么样的边只在一个面的边界中?
- 平面图的两个不同的面的边界可以完全相同吗?
- 对于任意一个图的平面图(面数至少为2)的无限面, 你能找到该图的另一个平面图的有限面, 使两个面的边界是相同的子图吗?反之能吗?
- 若图*G*的所有块都是可平面图,则*G*是可平面图吗?



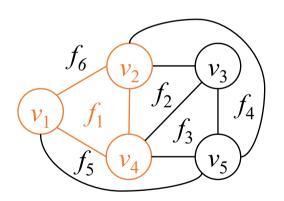
- 什么样的边在两个面的边界中? 什么样的边只在一个面的边界中?
- 平面图的两个不同的面的边界可以完全相同吗?
- 对于任意一个图的平面图(面数至少为2)的无限面, 你能找到该图的另一个平面图的有限面, 使两个面的边界是相同的子图吗?反之能吗?
- 若图G的所有块都是可平面图,则G是可平面图吗?

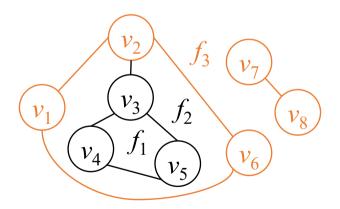




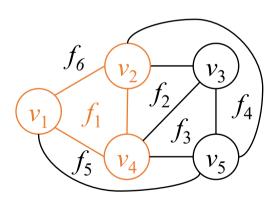
■ 面的长度

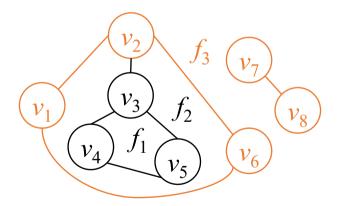
• 从平面分隔出面的闭路线的长度的和, 记作*l(f)*



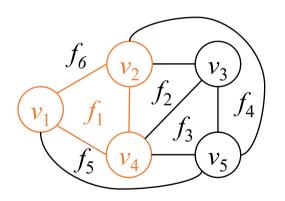


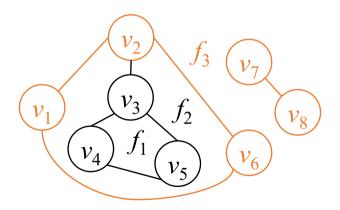
- 面的长度
 - 从平面分隔出面的闭路线的长度的和, 记作*l(f)*
- 面的长度和面的边界的边数相等吗?





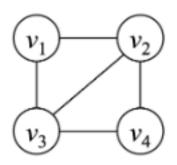
■ 对于任意一个图G的平面图H, $\phi^{(H)}$ H的所有面的长度的和等于G的边数的 2 倍: $\sum_{i=1}^{\phi(H)} l(f_i) = 2 \cdot \epsilon(G)$

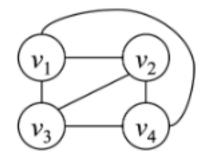




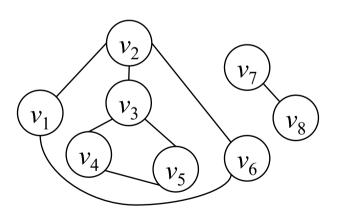
■ 极大可平面图

• 简单可平面图, 且不是任何简单可平面图的生成真子图

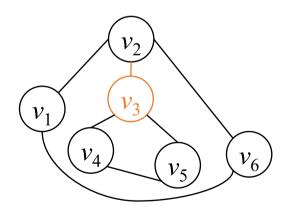




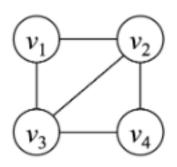
■ 极大可平面图连通吗?

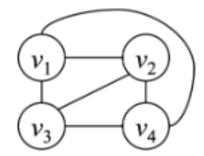


- 极大可平面图连通吗?
- 阶至少为3的极大可平面图可以有割点或割边吗?



- 极大可平面图连通吗?
- 阶至少为3的极大可平面图可以有割点或割边吗?
- 阶至少为3的极大可平面图的平面图的每个面的边界有什么特征?



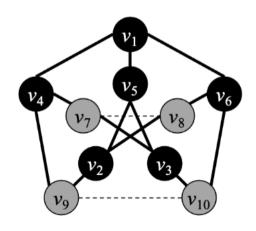


■ 对于任意一个阶为n $(n \ge 3)$ 的极大可平面图G: $\varepsilon(G) = 3n-6$

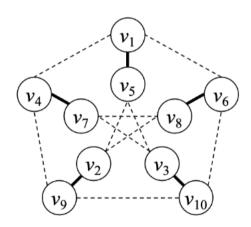
- 对于任意一个阶为n $(n \ge 3)$ 的极大可平面图G: $\varepsilon(G) = 3n-6$
 - *G*的平面图*H*的每个面的长度均为3 则2 · $\varepsilon(G) = 3 \cdot \varphi(H)$,即 $\varphi(H) = 2/3 \cdot \varepsilon(G)$
 - 代入连通图的欧拉公式: $n \varepsilon(G) + \varphi(H) = 2$

- 对于任意一个阶为n $(n \ge 3)$ 的极大可平面图G: $\varepsilon(G) = 3n-6$
 - *G*的平面图*H*的每个面的长度均为3 则2 · $\varepsilon(G) = 3 \cdot \varphi(H)$,即 $\varphi(H) = 2/3 \cdot \varepsilon(G)$
 - 代入连通图的欧拉公式: $n \varepsilon(G) + \varphi(H) = 2$
- 对于任意一个阶为n $(n \ge 3)$ 的简单可平面图G: $\varepsilon(G) \le 3n-6$

- 可平面图的充要条件:
 - G不含这样的子图:可通过对 K_5 或 $K_{3,3}$ 进行若干次边剖分得到



- 可平面图的充要条件:
 - G不含这样的子图:可通过对 K_5 或 $K_{3,3}$ 进行若干次边剖分得到
 - G不含这样的子图:可通过若干次边收缩得到 K_5 或 $K_{3,3}$

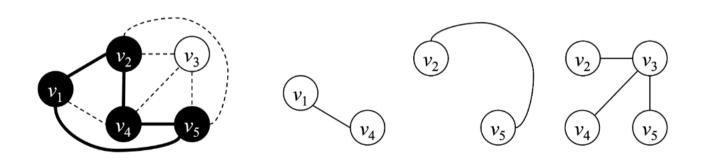


- Kazimierz Kuratowski, 1896年出生于波兰
- Klaus Wagner, 1910年出生于德国

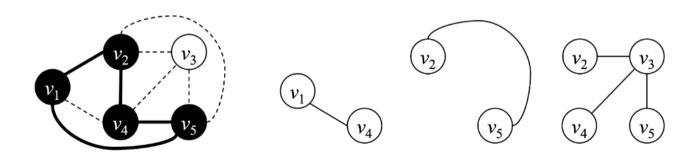
https://upload.wikimedia.org/wikipedia/commons/1/18/Kazimierz_Kuratowski.jpg https://en.wikipedia.org/wiki/File:Wagner_and_Harary.jpg

■ 如何判定一个图是否为可平面图?

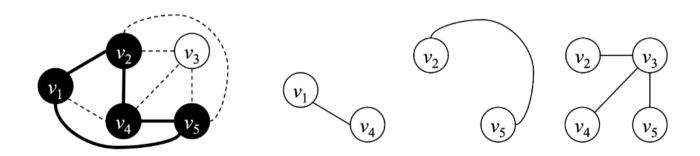
- 对于图G的子图 $H = \langle V_H, E_H \rangle$,若G的子图B恰由
 - TAE_{H} 中但端点在 V_{H} 中的一条边
 - 或 $G V_H$ 的一个连通分支以及端点分别在该连通分支和 V_H 中的所有边组成,则
 - B称作G的H片段
 - B和H的公共顶点称作B的固定点



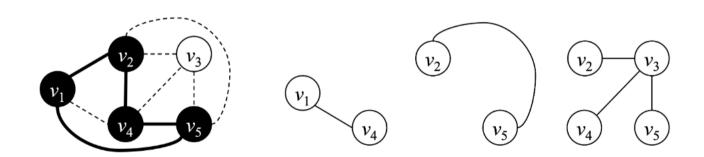
■ *H*片段连通吗?



- H片段连通吗?
- 对于连通图G,子图H和所有H片段的并是什么?



- H片段连通吗?
- 对于连通图G,子图H和所有H片段的并是什么?
- 子图*H*和*H*片段的边集相交吗?两个*H*片段的边集相交吗?



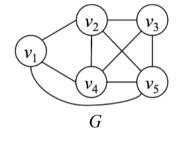
■ DMP算法

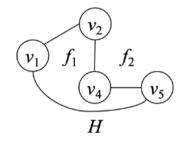
逐步尝试构造图的平面嵌入,每步尝试将 当前已映射到平面上的子图的一个片段中的一条路映射到平面上

```
算法 10.1: DMP 算法
  输入: 2 连通图 G = \langle V, E \rangle
 1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
 2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
         foreach f_i \in H 的平面图的所有面 do
 6
             if f_i 的边界含 B_i 的所有固定点 then
 7
               B_i.F \leftarrow B_i.F \cup \{f_i\};
         if B_i.F = \emptyset then
 9
             输出 (G是不可平面图):
10
         else if |B_i.F| = 1 then
11
            B \leftarrow B_i:
12
      if B = \text{null then}
13
       B \leftarrow G 的任意一个 H 片段;
14
     P \leftarrow B 中任意两个固定点间的一条路;
15
    f \leftarrow B.F 中任意一个面;
16
    将 P 映射到平面上的 f 内;
17
    V_H \leftarrow V_H \cup P经过的顶点的集合;
18
    E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```

■ 对于2连通图G, 从G中任意一个圈开始

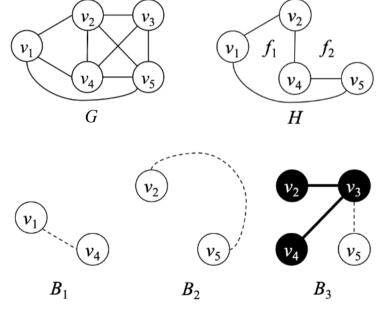
```
算法 10.1: DMP 算法
  输入: 2 连通图 G = \langle V, E \rangle
 1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
 2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
         foreach f_i \in H 的平面图的所有面 do
 6
             if f_i 的边界含 B_i 的所有固定点 then
 7
               B_i.F \leftarrow B_i.F \cup \{f_i\};
         if B_i.F = \emptyset then
 9
             输出 (G是不可平面图);
10
         else if |B_i.F| = 1 then
11
           B \leftarrow B_i;
12
      if B = \text{null then}
13
       B \leftarrow G 的任意一个 H 片段;
14
     P \leftarrow B 中任意两个固定点间的一条路;
15
    f \leftarrow B.F 中任意一个面;
16
    将 P 映射到平面上的 f 内;
17
    V_H \leftarrow V_H \cup P经过的顶点的集合;
18
    E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```





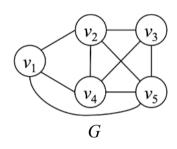
■ 每轮while循环尝试将 当前已映射到平面上的子图H的一个片段B中的一条路P映射到平面上

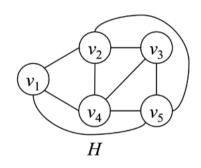
```
算法 10.1: DMP 算法
  输入: 2 连通图 G = \langle V, E \rangle
1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
         foreach f_i \in H 的平面图的所有面 do
 6
             if f_i 的边界含 B_i 的所有固定点 then
               B_i.F \leftarrow B_i.F \cup \{f_i\};
         if B_i.F = \emptyset then
 9
             输出 (G是不可平面图);
10
         else if |B_i.F| = 1 then
11
            B \leftarrow B_i;
12
      if B = \text{null then}
13
         B \leftarrow G 的任意一个 H 片段;
14
      P \leftarrow B 中任意两个固定点间的一条路;
15
     f \leftarrow B.F 中任意一个面;
16
     将 P 映射到平面上的 f 内;
17
     V_H \leftarrow V_H \cup P经过的顶点的集合;
     E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```



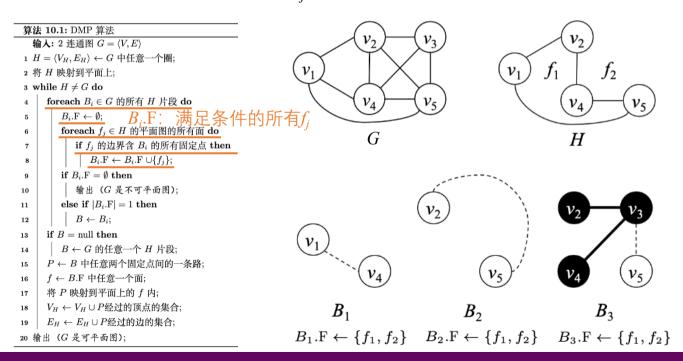
■ 直至*G*全部映射到平面上,则*G*为可平面图

```
算法 10.1: DMP 算法
  输入: 2 连通图 G = \langle V, E \rangle
1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
         foreach f_i \in H 的平面图的所有面 do
 6
            if f_i 的边界含 B_i 的所有固定点 then
             B_i.F \leftarrow B_i.F \cup \{f_i\};
         if B_i.F = \emptyset then
 9
            输出 (G是不可平面图);
10
         else if |B_i.F| = 1 then
11
           B \leftarrow B_i;
12
      if B = \text{null then}
13
       B \leftarrow G 的任意一个 H 片段;
14
    P \leftarrow B 中任意两个固定点间的一条路;
15
    f \leftarrow B.F 中任意一个面;
16
    将 P 映射到平面上的 f 内;
17
    V_H \leftarrow V_H \cup P经过的顶点的集合;
18
    E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```



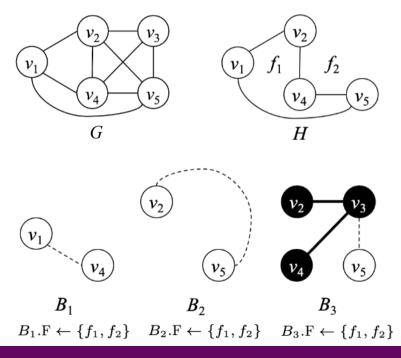


■ 对于每个H片段 B_i ,仅当面 f_j 的边界含 B_i 的所有固定点时, B_i 才有可能映射到平面上的 f_j 内



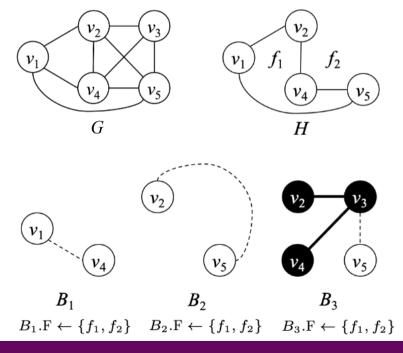
■ 若任意一个B_i的F属性值为空集,则G为不可平面图

```
算法 10.1: DMP 算法
   输入: 2 连通图 G = \langle V, E \rangle
1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
 2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
         foreach f_i \in H 的平面图的所有面 do
 6
             if f_i 的边界含 B_i 的所有固定点 then
             B_i.F \leftarrow B_i.F \cup \{f_i\};
         if B_i.F = \emptyset then
 9
            输出 (G 是不可平面图);
10
         else if |B_i.F| = 1 then
11
           B \leftarrow B_i;
12
      if B = \text{null then}
13
       B \leftarrow G 的任意一个 H 片段;
14
      P \leftarrow B 中任意两个固定点间的一条路;
15
    f \leftarrow B.F 中任意一个面;
16
    将 P 映射到平面上的 f 内;
17
    V_H \leftarrow V_H \cup P经过的顶点的集合;
    E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```



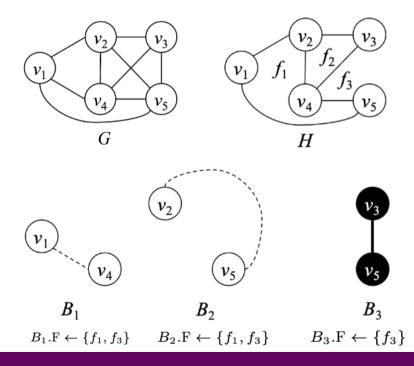
■ 否则,优先选择仅能映射到一个面内的H片段作为B

```
算法 10.1: DMP 算法
  输入: 2 连通图 G = \langle V, E \rangle
1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
         foreach f_i \in H 的平面图的所有面 do
 6
            if f_i 的边界含 B_i 的所有固定点 then
               B_i.F \leftarrow B_i.F \cup \{f_i\};
         if B_i.F = \emptyset then
 9
            输出 (G是不可平面图);
10
         else if |B_i.F| = 1 then
11
          B \leftarrow B_i;
12
      if B = \text{null then}
13
       B \leftarrow G 的任意一个 H 片段;
14
      P \leftarrow B 中任意两个固定点间的一条路;
15
     f \leftarrow B.F 中任意一个面;
16
    将 P 映射到平面上的 f 内;
17
    V_H \leftarrow V_H \cup P经过的顶点的集合;
     E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```



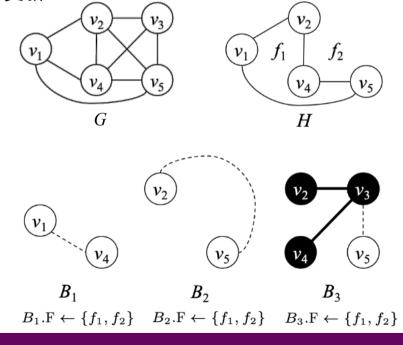
■ 否则,优先选择仅能映射到一个面内的H片段作为B

```
算法 10.1: DMP 算法
  输入: 2 连通图 G = \langle V, E \rangle
1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
         foreach f_i \in H 的平面图的所有面 do
 6
            if f_i 的边界含 B_i 的所有固定点 then
               B_i.F \leftarrow B_i.F \cup \{f_i\};
         if B_i.F = \emptyset then
 9
            输出 (G是不可平面图);
10
         else if |B_i.F| = 1 then
11
            B \leftarrow B_i;
12
      if B = \text{null then}
13
       B \leftarrow G 的任意一个 H 片段;
14
      P \leftarrow B 中任意两个固定点间的一条路;
15
     f \leftarrow B.F 中任意一个面;
16
    将 P 映射到平面上的 f 内;
17
    V_H \leftarrow V_H \cup P经过的顶点的集合;
     E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```



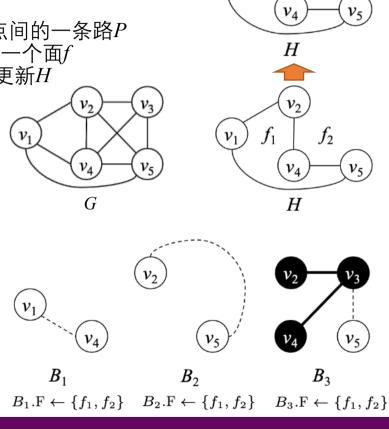
■ 从*B*中选择任意两个固定点间的一条路*P* 从*B*的*F*属性值中选择任意一个面*f* 将*P*映射到平面上的*f*内并更新*H*

```
算法 10.1: DMP 算法
  输入: 2 连通图 G = \langle V, E \rangle
1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
         foreach f_i \in H 的平面图的所有面 do
             if f_i 的边界含 B_i 的所有固定点 then
               B_i.F \leftarrow B_i.F \cup \{f_i\};
         if B_i.F = \emptyset then
 9
             输出 (G是不可平面图):
10
         else if |B_i.F| = 1 then
11
            B \leftarrow B_i;
12
      if B = \text{null then}
13
         B \leftarrow G 的任意一个 H 片段;
14
      P \leftarrow B 中任意两个固定点间的一条路;
15
     f \leftarrow B.F 中任意一个面;
16
     将 P 映射到平面上的 f 内;
17
     V_H \leftarrow V_H \cup P经过的顶点的集合;
18
     E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```



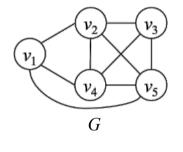
■ 从*B*中选择任意两个固定点间的一条路*P* 从*B*的*F*属性值中选择任意一个面*f* 将*P*映射到平面上的*f*内并更新*H*

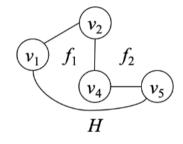
```
算法 10.1: DMP 算法
  输入: 2 连通图 G = \langle V, E \rangle
1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
         foreach f_i \in H 的平面图的所有面 do
             if f_i 的边界含 B_i 的所有固定点 then
               B_i.F \leftarrow B_i.F \cup \{f_i\};
         if B_i.F = \emptyset then
 9
             输出 (G是不可平面图):
10
         else if |B_i.F| = 1 then
11
            B \leftarrow B_i:
12
      if B = \text{null then}
13
         B \leftarrow G 的任意一个 H 片段;
14
      P \leftarrow B 中任意两个固定点间的一条路;
15
     f \leftarrow B.F 中任意一个面;
16
     将 P 映射到平面上的 f 内;
17
     V_H \leftarrow V_H \cup P经过的顶点的集合;
18
      E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```



■ 算法开始

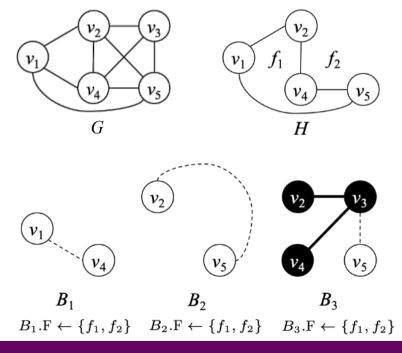
```
算法 10.1: DMP 算法
  输入: 2 连通图 G = \langle V, E \rangle
1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
 5
         foreach f_i \in H 的平面图的所有面 do
 6
             if f_i 的边界含 B_i 的所有固定点 then
 7
               B_i.F \leftarrow B_i.F \cup \{f_j\};
         if B_i.F = \emptyset then
 9
             输出 (G是不可平面图);
10
         else if |B_i.F| = 1 then
11
           B \leftarrow B_i;
12
      if B = \text{null then}
13
       B \leftarrow G 的任意一个 H 片段;
14
      P \leftarrow B 中任意两个固定点间的一条路;
15
     f \leftarrow B.F 中任意一个面;
16
    将 P 映射到平面上的 f 内;
17
    V_H \leftarrow V_H \cup P经过的顶点的集合;
18
    E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```





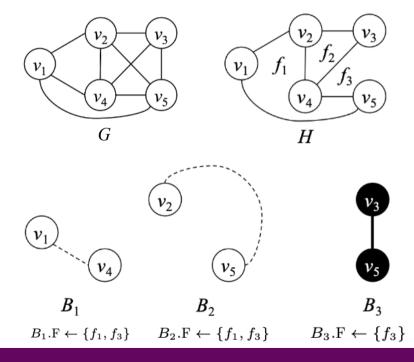
■ 第1轮while循环

```
算法 10.1: DMP 算法
   输入: 2 连通图 G = \langle V, E \rangle
1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
 2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
         foreach f_i \in H 的平面图的所有面 do
 6
             if f_i 的边界含 B_i 的所有固定点 then
 7
             B_i.F \leftarrow B_i.F \cup \{f_i\};
         if B_i.F = \emptyset then
 9
             输出 (G 是不可平面图);
10
         else if |B_i.F| = 1 then
11
          B \leftarrow B_i;
12
      if B = \text{null then}
13
       B \leftarrow G 的任意一个 H 片段;
14
      P \leftarrow B 中任意两个固定点间的一条路;
15
     f \leftarrow B.F 中任意一个面;
16
    将 P 映射到平面上的 f 内;
17
    V_H \leftarrow V_H \cup P经过的顶点的集合;
    E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```



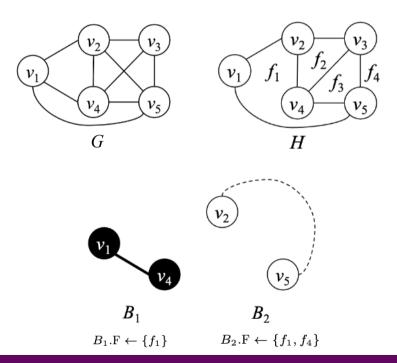
■ 第2轮while循环

```
算法 10.1: DMP 算法
   输入: 2 连通图 G = \langle V, E \rangle
1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
 2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
         foreach f_i \in H 的平面图的所有面 do
 6
             if f_i 的边界含 B_i 的所有固定点 then
                B_i.F \leftarrow B_i.F \cup \{f_i\};
         if B_i.F = \emptyset then
 9
             输出 (G是不可平面图);
10
         else if |B_i.F| = 1 then
11
           B \leftarrow B_i;
12
      if B = \text{null then}
13
         B \leftarrow G 的任意一个 H 片段;
14
      P \leftarrow B 中任意两个固定点间的一条路;
15
     f \leftarrow B.F 中任意一个面;
16
    将 P 映射到平面上的 f 内;
17
    V_H \leftarrow V_H \cup P经过的顶点的集合;
     E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```



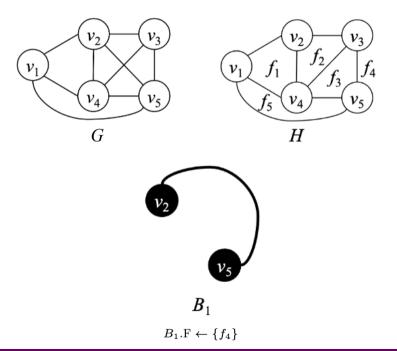
■ 第3轮while循环

```
算法 10.1: DMP 算法
  输入: 2 连通图 G = \langle V, E \rangle
1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
 2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
 5
         foreach f_i \in H 的平面图的所有面 do
 6
             if f_i 的边界含 B_i 的所有固定点 then
 7
               B_i.F \leftarrow B_i.F \cup \{f_i\};
         if B_i.F = \emptyset then
 9
             输出 (G是不可平面图);
10
         else if |B_i.F| = 1 then
11
           B \leftarrow B_i;
12
      if B = \text{null then}
13
       B \leftarrow G 的任意一个 H 片段;
14
      P \leftarrow B 中任意两个固定点间的一条路;
15
     f \leftarrow B.F 中任意一个面;
16
    将 P 映射到平面上的 f 内;
17
    V_H \leftarrow V_H \cup P经过的顶点的集合;
     E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```



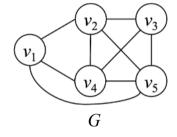
■ 第4轮while循环

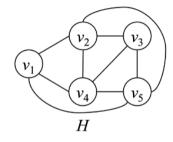
```
算法 10.1: DMP 算法
  输入: 2 连通图 G = \langle V, E \rangle
1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
 5
         foreach f_i \in H 的平面图的所有面 do
 6
             if f_i 的边界含 B_i 的所有固定点 then
 7
               B_i.F \leftarrow B_i.F \cup \{f_i\};
         if B_i.F = \emptyset then
 9
             输出 (G是不可平面图);
10
         else if |B_i.F| = 1 then
11
           B \leftarrow B_i;
12
      if B = \text{null then}
13
       B \leftarrow G 的任意一个 H 片段;
14
      P \leftarrow B 中任意两个固定点间的一条路;
15
    f \leftarrow B.F 中任意一个面;
16
    将 P 映射到平面上的 f 内;
17
    V_H \leftarrow V_H \cup P经过的顶点的集合;
18
    E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```



■ 第5轮while循环

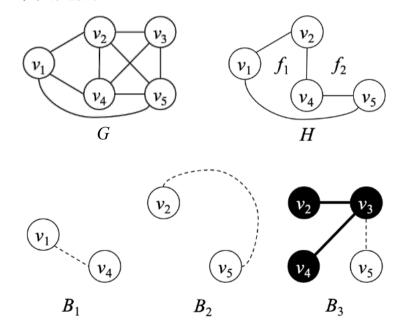
```
算法 10.1: DMP 算法
  输入: 2 连通图 G = \langle V, E \rangle
1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
         foreach f_i \in H 的平面图的所有面 do
 6
             if f_i 的边界含 B_i 的所有固定点 then
               B_i.F \leftarrow B_i.F \cup \{f_i\};
         if B_i.F = \emptyset then
 9
             输出 (G是不可平面图);
10
         else if |B_i.F| = 1 then
11
           B \leftarrow B_i;
12
      if B = \text{null then}
13
       B \leftarrow G 的任意一个 H 片段;
14
     P \leftarrow B 中任意两个固定点间的一条路;
15
    f \leftarrow B.F 中任意一个面;
16
    将 P 映射到平面上的 f 内;
17
    V_H \leftarrow V_H \cup P经过的顶点的集合;
18
    E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```



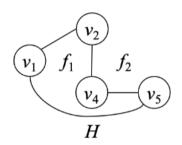


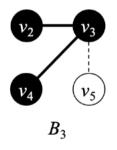
■ 对于非2连通图,如何利用DMP算法判定是否为可平面图?

- 对于非2连通图,如何利用DMP算法判定是否为可平面图?
- 为什么H片段一定有至少2个固定点?
 - 如果没有固定点?
 - 如果只有1个固定点?

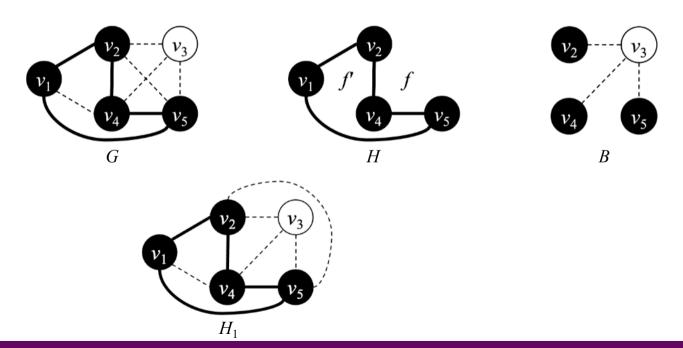


- 对于非2连通图,如何利用DMP算法判定是否为可平面图?
- 为什么H片段一定有至少2个固定点?
- 为什么从B中只选择一条路映射到平面上?



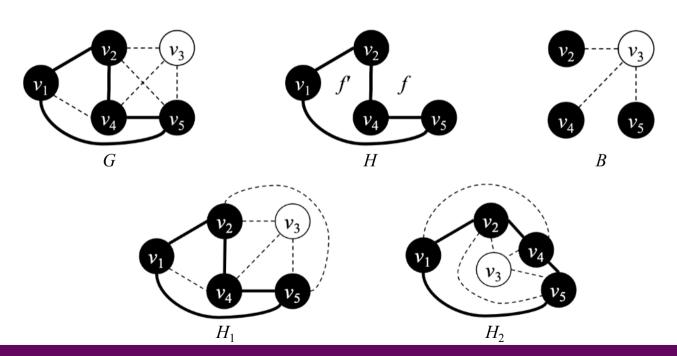


■ 正确性: 对于可平面图G, DMP算法每轮while循环条件判定前, 子图H的平面图可以扩展为G的平面图



可平面图

■ 正确性: 对于可平面图G, DMP算法每轮while循环条件判定前, 子图H的平面图可以扩展为G的平面图



可平面图

- 时间复杂度: *O*(*n*²)
 - while循环的轮数: *O*(*n*)
 - 每轮while循环的时间复杂度: O(n)

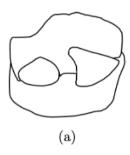
```
算法 10.1: DMP 算法
  输入: 2 连通图 G = \langle V, E \rangle
1 H = \langle V_H, E_H \rangle ← G 中任意一个圈;
2 将 H 映射到平面上;
3 while H \neq G do
      foreach B_i \in G 的所有 H 片段 do
         B_i.F \leftarrow \emptyset;
 5
         foreach f_i \in H 的平面图的所有面 do
 6
             if f_i 的边界含 B_i 的所有固定点 then
 7
             B_i.F \leftarrow B_i.F \cup \{f_i\};
         if B_i.F = \emptyset then
 9
             输出 (G是不可平面图):
10
         else if |B_i.F| = 1 then
11
           B \leftarrow B_i;
12
      if B = \text{null then}
13
       B \leftarrow G 的任意一个 H 片段;
14
     P \leftarrow B 中任意两个固定点间的一条路;
15
    f \leftarrow B.F 中任意一个面;
16
17
    将 P 映射到平面上的 f 内;
    V_H \leftarrow V_H \cup P经过的顶点的集合;
    E_H \leftarrow E_H \cup P经过的边的集合;
20 输出 (G 是可平面图);
```

本次课的主要内容

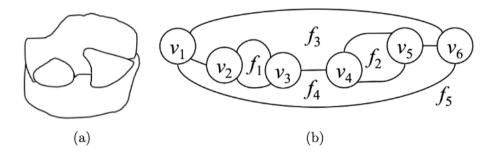
10.1 可平面图

10.2 面的染色

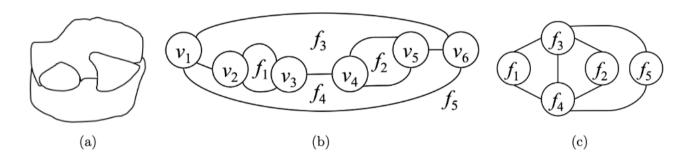
■ 地图染色问题



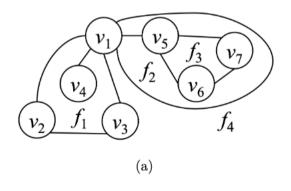
■ 地图染色问题

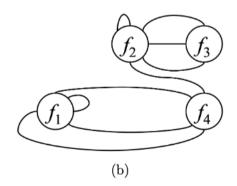


■ 地图染色问题

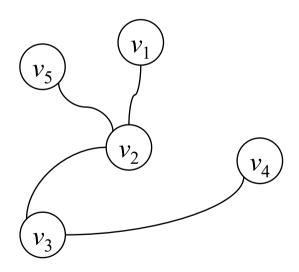


- 可平面图 $G = \langle V_G, E_G \rangle$ 的平面图H的**对偶图**,记作 H^*
 - 顶点集: *H*的所有面的集合

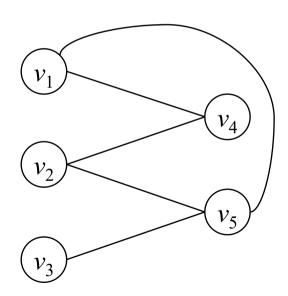




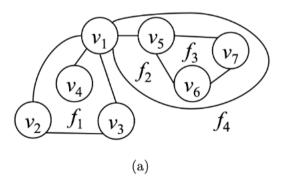
■ 树的平面图的对偶图有什么特征?

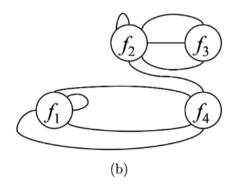


- 树的平面图的对偶图有什么特征?
- 二分图的平面图的对偶图有什么特征?

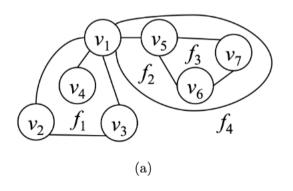


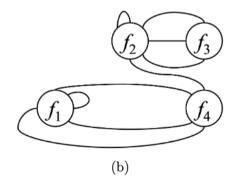
■ 对偶图连通吗?



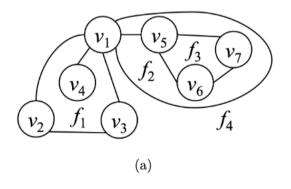


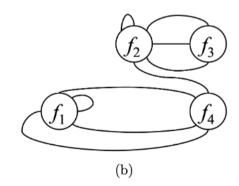
- 对偶图连通吗?
- 自环对应的对偶图中的边有什么特征?



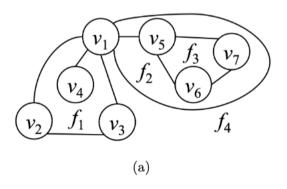


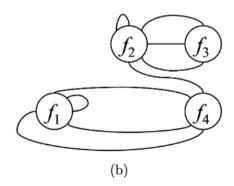
- 对偶图连通吗?
- 自环对应的对偶图中的边有什么特征?
- 一个圈经过的所有边对应的对偶图中的边的集合有什么特征?



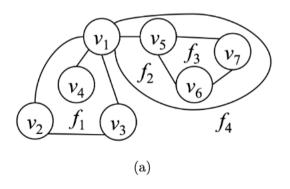


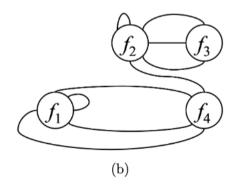
■ 对偶图是可平面图吗?



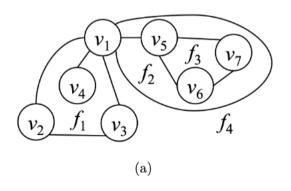


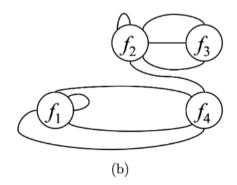
- 对偶图是可平面图吗?
- 同一个平面图的不同对偶图同构吗?





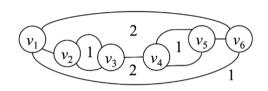
- 对偶图是可平面图吗?
- 同一个平面图的不同对偶图同构吗?
- 同一个图的不同平面图的对偶图同构吗?



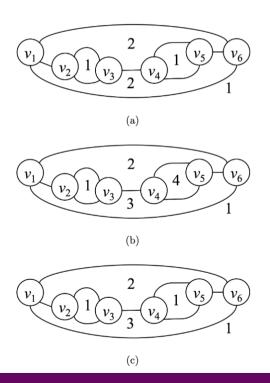


■ *k*面染色

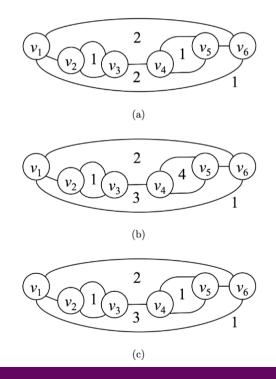
• 函数 $fc: F \rightarrow \{1, ..., k\}$,值域代表k种色



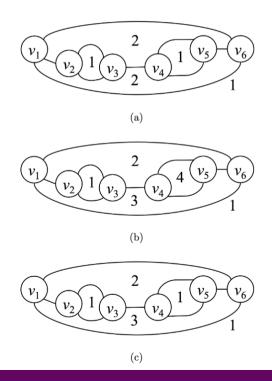
- k面染色
 - 函数 $fc: F \rightarrow \{1, ..., k\}$,值域代表k种色
- 正常*k*面染色
 - 相邻(边界含公共边)的面的色都不同



- *k*面色可染
 - 存在正常k面染色



- *k*面色可染
 - 存在正常k面染色
- 面色数
 - 使H是k面色可染的最小k值



- 五色定理
 - 平面图是5面色可染
 - 对于任意一个简单可平面图 $G: \chi(G) \le 5$

■ Percy John Heawood, 1861年出生于英国

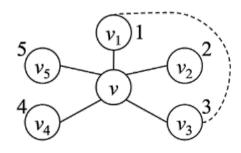
- 对于任意一个简单可平面图G: $\chi(G) \le 5$
 - 采用数学归纳法, 对v(G)归纳

- 对于任意一个简单可平面图G: $\chi(G) \le 5$
 - 采用数学归纳法, 对v(G)归纳
 - v(G) ≤ 5时: χ(G) ≤ 5成立

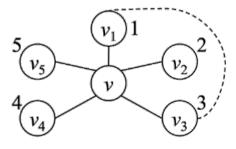
- 对于任意一个简单可平面图G: χ(G) ≤ 5
 - 采用数学归纳法, 对v(G)归纳
 - ν(G) ≤ 5时: γ(G) ≤ 5成立
 - 假设v(G) = k时成立,则v(G) = k + 1时: 存在顶点v满足 $d(v) \le 5$ (作业),由归纳假设, $\chi(G - v) \le 5$ 将G - v的正常 $\chi(G - v)$ 点染色扩展为G的正常k'点染色且k' ≤ 5

- 对于任意一个简单可平面图G: χ(G) ≤ 5
 - 采用数学归纳法, 对v(G)归纳
 - ν(G) ≤ 5时: γ(G) ≤ 5成立
 - 假设v(G) = k时成立,则v(G) = k + 1时: 存在顶点v满足 $d(v) \le 5$ (作业),由归纳假设, $\chi(G - v) \le 5$ 将G - v的正常 $\chi(G - v)$ 点染色扩展为G的正常k'点染色且k' ≤ 5
 - 若 $d(v) \le 4$,或d(v) = 5且v有邻点的色相同,如何对v染色?

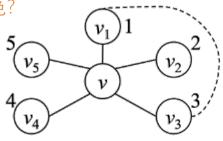
- 对于任意一个简单可平面图G: χ(G) ≤ 5
 - 采用数学归纳法, 对v(G)归纳
 - v(G)≤5时: χ(G)≤5成立
 - 假设v(G) = k时成立,则v(G) = k + 1时: 存在顶点v满足 $d(v) \le 5$ (作业),由归纳假设, $\chi(G - v) \le 5$ 将G - v的正常 $\chi(G - v)$ 点染色扩展为G的正常k'点染色且k' ≤ 5
 - 若 $d(v) \le 4$, 或d(v) = 5且v有邻点的色相同, 如何对v染色?
 - 若d(v) = 5且v的所有邻点的色互不相同,如何对v染色?



- 对于任意一个简单可平面图G: χ(G) ≤ 5
 - 采用数学归纳法, 对v(G)归纳
 - ν(G) ≤ 5时: χ(G) ≤ 5成立
 - 假设v(G) = k时成立,则v(G) = k + 1时: 存在顶点v满足 $d(v) \le 5$ (作业),由归纳假设, $\chi(G - v) \le 5$ 将G - v的正常 $\chi(G - v)$ 点染色扩展为G的正常k'点染色且k' ≤ 5
 - 若 $d(v) \le 4$,或d(v) = 5且v有邻点的色相同,如何对v染色?
 - 若d(v) = 5且v的所有邻点的色互不相同: $G_{1,3}$: G v中色为1或3的顶点子集的点导出子图若 v_1 和 v_3 在 $G_{1,3}$ 的不同连通分支中,如何对v染色?

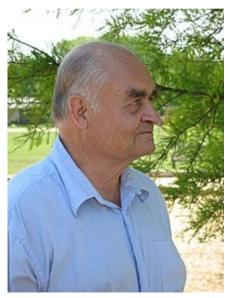


- 对于任意一个简单可平面图G: χ(G) ≤ 5
 - 采用数学归纳法, 对v(G)归纳
 - ν(G) ≤ 5时: χ(G) ≤ 5成立
 - 假设v(G) = k时成立,则v(G) = k + 1时: 存在顶点v满足 $d(v) \le 5$ (作业),由归纳假设, $\chi(G - v) \le 5$ 将G - v的正常 $\chi(G - v)$ 点染色扩展为G的正常k'点染色且k' ≤ 5
 - 若 $d(v) \le 4$,或d(v) = 5且v有邻点的色相同,如何对v染色?
 - 若d(v) = 5且v的所有邻点的色互不相同: $G_{1,3}$: G v中色为1或3的顶点子集的点导出子图 若 v_1 和 v_3 在 $G_{1,3}$ 的不同连通分支中,如何对v染色? 若 v_1 1 v_3 2 v_3 2 v_3 3 v_3 3 v_3 2 v_3 3 v_3 2 v_3 3 v_3 3 v_3 3 v_3 4 v_3 2 v_3



- 四色定理
 - 平面图是4面色可染
 - 对于任意一个简单可平面图 $G: \chi(G) \le 4$

- Kenneth Ira Appel, 1936 年出生于美国
- Wolfgang Haken, 1928年出生于德国



 $https://math.illinois.edu/sites/default/files/inline-images/ken-appel-150.jpg \\ https://upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Wolfgang_Haken_2008.jpg/440px-Wolfgang_Haken_2$

■ 四色定理是计算机辅助证明的第一个重要定理

■ 四色定理是计算机辅助证明的第一个重要定理

• 1879年

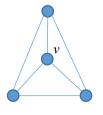
英国数学家肯普(Alfred Kempe)给出了一个证明, 尽管该证明存在错误,但逐步发展成为一种主要的证明思路: 寻找由若干个可约构形组成的不可避免集,从而证明不存在(极小)反例

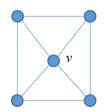
极小反例: 阶最小的反例不失一般性,假设其为极大可平面图(否则,增加边直至极大)

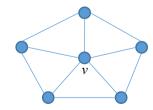
- 构形: 每个内部面的长度都为3的简单平面图

- 可约构形: 极小反例不可能含的构形(若含,则可被约减为一个更小反例)

- 不可避免集:任何一个极小反例含其中至少一个构形







- 四色定理是计算机辅助证明的第一个重要定理
 - 1879年 英国数学家肯普(Alfred Kempe)给出了一个证明, 尽管该证明存在错误,但逐步发展成为一种主要的证明思路: 寻找由若干个可约构形组成的不可避免集,从而证明不存在(极小)反例
 - 1890年 希伍德指出了肯普证明中的错误,并证明了五色定理

- 四色定理是计算机辅助证明的第一个重要定理
 - 1879年 英国数学家肯普(Alfred Kempe)给出了一个证明, 尽管该证明存在错误,但逐步发展成为一种主要的证明思路: 寻找由若干个可约构形组成的不可避免集,从而证明不存在(极小)反例
 - 1890年 希伍德指出了肯普证明中的错误,并证明了五色定理
 - 20世纪60至70年代 德国数学家希什(Heinrich Heesch)提出了一种构造不可避免集的方法, 并设计了算法在计算机的辅助下验证构形的可约性 然而,他没能得到足够的经费支持来完成这项计算任务

- 四色定理是计算机辅助证明的第一个重要定理
 - 1879年 英国数学家肯普(Alfred Kempe)给出了一个证明, 尽管该证明存在错误,但逐步发展成为一种主要的证明思路: 寻找由若干个可约构形组成的不可避免集,从而证明不存在(极小)反例
 - 1890年 希伍德指出了肯普证明中的错误,并证明了五色定理
 - 20世纪60至70年代 德国数学家希什(Heinrich Heesch)提出了一种构造不可避免集的方法, 并设计了算法在计算机的辅助下验证构形的可约性 然而,他没能得到足够的经费支持来完成这项计算任务
 - 1976年 阿佩尔和哈肯宣布在计算机的辅助下找到了由1936个可约构形组成的不可 避免集,从而证明了四色定理,相关论文于1977年发表 1989年 完成了错误修订

- 四色定理是计算机辅助证明的第一个重要定理
 - 1996年 罗伯逊(Neil Robertson)、桑德斯(Daniel Sanders)、西蒙(Paul Seymour)、托马斯(Robin Thomas)提出了一个真正的计算机可验证 的证明,使用的633种构型的可约性和不可避免性都可由计算机检查

- 四色定理是计算机辅助证明的第一个重要定理
 - 1996年 罗伯逊(Neil Robertson)、桑德斯(Daniel Sanders)、西蒙(Paul Seymour)、托马斯(Robin Thomas)提出了一个真正的计算机可验证 的证明,使用的633种构型的可约性和不可避免性都可由计算机检查
 - 2005年
 维尔纳(Benjamin Werner)和贡蒂埃(Georges Gonthier)用定理证明工具Cog形式化了这个证明。人们只需要相信Cog的正确性就足够了

书面作业

■ 练习10.1、10.2、10.3、10.4