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Abstract. Ontology matching is a crucial task for data integration and
management on the Semantic Web. The ontology matching techniques
today can solve many problems from heterogeneity of ontologies to some
extent. However, for matching large ontologies, most ontology match-
ers take too long run time and have strong requirements on running
environment. Based on the MapReduce framework and the virtual doc-
ument technique, in this paper, we propose a 3-stage MapReduce-based
approach called V-Doc+ for matching large ontologies, which signifi-
cantly reduces the run time while keeping good precision and recall.
Firstly, we establish four MapReduce processes to construct virtual doc-
ument for each entity (class, property or instance), which consist of a
simple process for the descriptions of entities, an iterative process for
the descriptions of blank nodes and two processes for exchanging the
descriptions with neighbors. Then, we use a word-weight-based partition
method to calculate similarities between entities in the corresponding re-
ducers. We report our results from two experiments on an OAEI dataset
and a dataset from the biology domain. Its performance is assessed by
comparing with existing ontology matchers. Additionally, we show how
run time is reduced with increasing the size of cluster.

1 Introduction

The Semantic Web is an ongoing effort by the W3C community. To push tradi-
tional knowledge towards a common expression form, a number of data produc-
ers, such as MusicBrainz [12] and FMA [18], have published their data in the
form of ontologies.

The wildly use of ontologies brings a practical problem. Due to the dispersion
of Web data, there are multiple ontologies from different publishers over the
world. Therefore, in the same or related domain, different ontologies may contain
heterogeneous classes, properties and instances (all of them are uniformly called
entities in this paper), which need ontology matching techniques to find those
denoting the same thing in the real world [6,1].

To date, a number of ontology matching tools have been created to solve
the problem of heterogeneity. Referring to the report of OAEI 2010 [4], some
ontology matchers have good performance on real world datasets. However, a
complex matching algorithm often leads to a long run time. According to our
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investigation, most ontology matching tools suffer from unsatisfiable run time in
large ontology matching despite of their high precision and recall. For example, in
medicine and biology domains, two large ontologies (FMA [18,23] and GALEN1)
need to be matched. But most matchers spend hours even weeks on matching
them. The main reason is their complex matching algorithms with limited CPU
and memory environments [17]. Some researchers focused on the solution, such
as ontology partition [8] and early pruning of dissimilar element pairs [15]. But
they all fail to utilize the great power of modern parallel computing devices.

In this paper, we propose a parallel matching approach called V-Doc+ which
is based on virtual document [16] and MapReduce [2]. The architecture of our
approach is outlined in Fig. 1.
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Fig. 1. Overview of the approach

Our approach contains three end-to-end MapReduce stages: constructing de-
scriptions, obtaining information of neighbors and matching virtual documents.
Before all start, in the stage of preprocessing, ontologies are splitted into the files
which fit the requirement of the input format of MapReduce [2]. Based on the
separated entities and RDF statements, the descriptions of entities and blank
nodes will be calculated using several iterative MapReduce processes. Also, we
optimize the description of each entity and blank node by annotating them with
the descriptions of the neighbors. Finally, in the stage of matching virtual doc-
uments, we extract the high-weight words in the descriptions and partition the
entities for reducing calculation space.

1 http://www.opengalen.org/

http://www.opengalen.org/
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We test V-Doc+ on the Food Ontology from OAEI 2007 and FMA vs. GALEN
in medicine and biology domains. The experimental result shows a good run
time of our approach with moderate precision and recall. The comparison of the
efficiency in the environment with different number of nodes is also specified in
the paper.

The rest of this paper is organized as follows. Sect. 2 presents the foundation
of our approach and introduces the problem and Sect. 3 discusses related works.
In Sect. 4, we give a MapReduce-based approach to construct the descriptions of
entities and blank nodes. Information of neighbors is utilized in Sect. 5. Based on
the virtual documents, similarities are calculated and the method is introduced
in Sect. 6. Experimental results on two datasets are shown in Sect. 7. Finally,
Sect. 8 concludes this paper with future work.

2 Preliminaries

In this work, all stages are established on the MapReduce framework. In the
remainder of this section, we give the problem statement and introduce MapRe-
duce briefly.

2.1 Problem Statement

There are a number of works that present different viewpoints on the ontology
matching problem. In this paper, we define ontology matching as the process
of finding mappings between entities from different ontologies. Each mapping
consists of two entities and their confidence value. The definition is given as
follows:

Definition 1 (Ontology Matching). Let O and O′ be two ontologies. The
objective of ontology matching is to find a set of mappings defined as follows:

M = {O,O′,M} (1)

where M = {m1,m2, ...,mn} denotes a set of mappings. A mapping mi can
be written as mi = (e, e′, sim) where e and e′ are two entities from O and O′

respectively, and sim ∈ (0, 1] denotes the similarity between e and e′.

2.2 MapReduce

MapReduce is the most popular framework for parallel computation on a number
of computing nodes [2]. In MapReduce, the unit of computing process is named
job, where each job consists of two main phases: map and reduce. The map
inputs the data from the sources and splits each record into key/value pairs.
These pairs are partitioned into different reducers according to the keys. Before
a reducer handles the data, partitioned pairs are sorted by their keys and all
values sharing the same key are clustered into the same set. The computation
process is expressed in Fig. 2.
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Fig. 2. Data flow in MapReduce

MapReduce also provides programmers with an extensible framework. Based
on the interfaces, programmers are allowed to assign rules on how to partition
key/value pairs and how to sort by keys, and these partitioning rules offers ben-
efits for balancing the workload. Additionally, a combiner can also be rewritten
to perform a local reducer to relieve the workload of the reducers.

MapReduce has the great power of parallel computing which makes used
widely in a number of fields. In the ontology matching problem, one process
which costs much time is to match every two entities. For some similarity-based
matchers, calculating similarity on a large-scale dataset will cost too much time.
As an example, calculating similarity for every pair of a n-size set of entities must

be repeated n∗(n−1)
2 times. Fortunately, MapReduce provides a parallel approach

to partition data. According to the customized rules of partitioning, the n-size
set can be partitioned into several subsets and different subset is calculated in
different computing node. Thus, the run time is largely reduced.

Another usage of MapReduce for ontology matching is to solve the set-join
problem. For example, for class c, finding all rdfs:comment values of c need
to find all RDF statements that satisfy (c, rdfs:comment, l) where l is a literal.
Using MapReduce process can join c with its related RDF statements in a specific
reducer.

3 Related Work

Although plenty of works have been proposed for the ontology matching prob-
lem, few approaches focus on matching large ontologies. In fact, some simple
matching algorithms can deal with large ontologies with a good run time, such
as edit distance [19]. However, the good efficiency of them mostly relies on the
lightweight algorithms, which somtimes cannot achieve high precision and recall.

Rahm [17] summarized works towards large-scale schema and ontology match-
ing. One solution is to reduce search space. Rewriting matching processes [15]
could deal with different types of matching processes and use filter operators to
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prune dissimilar element pairs. The work in [8] integrated a structure-based par-
titioning algorithm into Falcon-AO. This divide-and-conquer algorithm could
calculate anchors and partition a large ontology into small clusters. Different
from Falcon-AO, the work in [22] used the positive and negative reduction an-
chors but did not partition ontologies. However, these works still do not improved
efficiency enough for a single compute node. Simplifying original algorithms to
solve the ontology matching problem is also an option [11], but may not obtain
a good recall.

There exists an approach that computes set-similarity joins with MapReduce
[20]. This approach proposed both self-join and R-S join cases, and partitioned
data in order to reduce matching space and balance the workload. The experi-
ments showed a surprising run time and a good speedup on large-scale datasets.
But the approach cannot be directly applied to matching ontologies as there are
blank nodes existing.

For matching large ontologies, some researchers investigated and compared
two kinds of parallelization on matching ontologies [7], and intra-matcher par-
allelization has been proved more versatile. The experiment also showed a fea-
sibility of parallel matching. However, this kind of approaches is in essence a
parallelizing matching workflow service consisting of a job queue, which is not
easy to implement.

4 Constructing Descriptions

The construction of descriptions which are described by a collection of words with
weights consists of two MapReduce sub-stages. We first preprocess to transform
ontologies into records which can be sent to mappers directly. To minimize the
network traffic, in all MapReduce processes, the real URIs are not transferred. So
each URI in the RDF statements is replaced with an identifier based on unique
name assumption. For example, we identify a class using a token ci, a property
using a token pi and an RDF statement using si while wi denotes a external
URI involved.

In this section, we focus on how to construct descriptions in the MapReduce
framework.

4.1 Descriptions of Entities

The first sub-stage is for named entities whose descriptions can be obtained by
the local information. For an entity e, the description is defined as follows:

Desc(e) = α1 ∗ collection of words in the local name of e

+ α2 ∗ collection of words in the rdfs:label of e

+ α3 ∗ collection of words in the rdfs:comment of e

+ α4 ∗ collection of words in other annotations of e (2)

where α1,α2,α3 and α4 are fixed rational numbers in [0,1].
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Fig. 3 presents an example data flow of constructing descriptions for entities.
In the process, we ignore blank nodes. All the information of rdfs:comment and
other annotations come from RDF statements. So the records from input involve
classes, properties and RDF statements.

The map function extracts the identifiers to check if they are RDF statements.
For each record of statement, the map function replaces its identifier with its
subject. But for classes and properties, the keys are directly emitted. For ex-
ample, in the figure, a record of RDF statement (s1, (c2, p1, l1)) is emitted by
changing the key s1 to c2. However, a record of class (c1, class1) is emitted
without any changes.

After aggregating by keys, for each class c or property p, all related RDF state-
ments are partitioned to the same reducer. The reduce function then calculates
Desc(c) or Desc(p) according to Equation (2).
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Fig. 3. Example data flow of constructing descriptions for entities

4.2 Descriptions of Blank Nodes

The second sub-stage is constructing descriptions for blank nodes. Having no
local description, blank nodes get their information from neighbors, which may
involve an iterative process. The following iteration equations give a convergence
solution:

Desc1(b) =
∑

subj(s)=b

Desc(pred(s)) +
∑

subj(s)=b
obj(s)/∈B

Desc(obj(s)) (3)

Desck+1(b) = β ∗ (Desc1(b) +
∑

subj(s)=b
obj(s)∈B

Desck(obj(s))) (4)

where subj(s), pred(s) and obj(s) denote subject, predicate and object of an
RDF statement respectively. β is an attenuation coefficient in the [0,1) range.
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However, MapReduce is not designed to handle the recursive problem. So we
transform each step of above equations into a MapReduce process. Firstly, we
establish a blank node structure to implement WritableComparable interface,
which extends the simple transmission unit for carrying the information of re-
maining nodes. Thus, the record of blank node b is extended from Desc(b) to
(Desc(b), {neb1, neb2, ..., nebn}), where nebi denotes the remaining node waiting
to be calculated.

We build a k-times-repeated MapReduce process to calculate descriptions for
blank nodes. Before map function starts, every remaining nodes set is initialized
with the current blank node. The input of map function derives from the output
of the first sub-stage. Fig. 4 shows an example data flow of constructing descrip-
tions for blank nodes. For each nebi in (Desc(b), {neb1, neb2, ..., nebn}), a map
function generates a new key-value pair where the key is nebi and the value is
(Desc(b), {}). Thus, a record of blank node may be replicated as many times
as the number of remaining nodes. The treatment of RDF statements is similar
with that in the first sub-stage.

The reduce function aggregates a blank node b with the related entities or
RDF statements. For each related entity e, we update the description of blank
node with βk ∗ Desc(e) where k denotes the number of times the process has
be repeated. For statement s whose subject is b, we add the object of s to
the remaining nodes of b. For example, in Fig. 4, the record of blank node b1
has two remaining nodes {b1, c5} and is thus partitioned to the reducers with
(b1, p6, c1) and Desc(c5) respectively. In the reducer which loads (b1, p6, c1), p6
and c1 is added to the remaining nodes of b1. Meanwhile, Desc(b1) is updated
by βk ∗Desc(c5) in another reducer. Notice that there exist duplicated records
in the output. So, a combinator is needed to integrate results.

It also should be noticed that we do not consider the cycle descriptions in this
process. We store the route of nodes which have been calculated and ignore all
new nodes appearing in the route.

The process of constructing descriptions for blank nodes should be repeated
k times. According to our experiments, five times of iteration is usually enough
to converge.
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5 Exchanging Information with Neighbors

The construction of virtual document needs both local descriptions and neighbor
information. This section considers to use information of neighbors to update
the description of each entity for constructing virtual document. The following
two equations give the definition of virtual document:

V D(e) = Desc(e) + γ ∗Neigh(e) (5)

Neigh(e) =
∑

e′∈SN(e)

Desc(e′) +
∑

e′∈PN(e)

Desc(e′) +
∑

e′∈ON(e)

Desc(e′) (6)

where SN(e) denotes the set of predicates and objects in the RDF statements
whose subject is e, PN(e) denotes the set of subjects and objects in the RDF
statements whose predicate is e and ON(e) stands for the set of subjects and
predicates in the RDF statements whose object is e. We define γ as the re-
peat times of the MapReduce process for blank nodes and let γ = 0.1. But for
some cases that most local information consist of trivial serial numbers or other
random tokens, γ should be increased.

The calculation process contains two stages. The first stage is to notice each
node with its neighbors and the second stage exchanges the descriptions between
the neighbors.

Fig. 5 shows an example data flow. For each RDF statement (s, p, o), the
map function of the first stage generates three new key-value pairs: (s, {p, o}),
(p, {s, o}) and (o, {s, p}). After that, for every entity e and blank node b, all neigh-
bors can be obtained in the reduce function. For example, an RDF statement
(b1, p5, b3) is a record from input, after mapping, (b1, {p5, b3}), (p5, {b1, b3})
and (b3, {b1, p5}) are partitioned into three different reducers. In the reducer
loading (b1, {p5, b3}), b1 gets to know that there exist neighbors p5 and b3 and
adds them in a temporary structure. The outputs of reducers are stored in a
temporary storage waiting the map function of the second stage to read.

With the locations of neighbors, every node sends its description in the second
stage. For the output value (Desc(c1), {b2, p4, p1}) in the temporary storage, c1
sends its description Desc(c1) to b2, p4 and p1. Thus, in the reduce function,
every entity gets all the descriptions of the neighbors and updates its own de-
scription.

Because of frequency skew, some reducers may meet an unbalanced workload
so that the whole calculation process is delayed heavily. Consequently, we count
the appearing time of each entity in all RDF statements and find those with
the highest frequency. Then we arrange some specific reducers to calculate the
entities with the top-frequency.

6 Matching Virtual Documents

In the final stage, we calculate the similarities between virtual documents with
the TF/IDF technique [14]. The value of TF can be easily calculated for a specific
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Fig. 5. Example data flow of exchanging information with neighbors

virtual document. To obtain the value of IDF, we build an additional MapReduce
process for calculating the frequency of each word, and the number of virtual
documents can be obtained in the preprocessing by counting the number of
entities. Cosine similarity is used to measure the similarity. Equation (7) gives
the function:

sim(e1, e2) =
V D(e1)× V D(e2)

|V D(e1)| ∗ |V D(e2)| (7)

Given a threshold θ, we define (e1, e2) be an ontology matching alignment where
sim(e1, e2) > θ.

Consider the objective of ontology matching, in the stage of matching vir-
tual documents, we ignore the instances. However, if we calculate similarity
for every two virtual documents respectively, lots of time would be wasted.
So reducing the calculation space is necessary. In this stage, we propose a
word-partition-based method to filter unnecessary matchings. For each descrip-
tion {(word1, score1),(word2 , score2),...,(wordn , scoren)}, we normalize scores
in [0, 1] and rank (word, score) pairs according to the value of scores. Thus,
score1 ≥ score2 ≥ ... ≥ scoren. We define the important words as the set of
words {word1, word2, ..., wordi}, where i is the minimal integer which satisfy
score1 + score2 + ...+ scorei ≥ δ. δ is a fixed rational number in [0, 1].

Fig. 6 explains the process. Each mapper ranks the words and put the top
words into the keys. For example, we select three words word1, word2, word3 for
entity c1 in the map phase and generate new key-value pairs: (word1, Desc(c1)),
(word2, Desc(c1)) and (word3, Desc(c1)). After partitioning, descriptions of en-
tities c1, c8 and c5 group into the same reduer with key word1. Then we use
Equation (7) to calculate the similarity between each two of them.
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Fig. 6. Example data flow of matching virtual documents

Workload Balance. We load the frequency of words in the memory and con-
struct a customized partitioner to choose the corresponding reducer. The words
should be distributed in each node according to the frequency as average as pos-
sible. But for those with too high frequency, it is very hard to arrange or even
split them. In this case, we assign one or more reducers to compute these high-
frequency words while ignoring other keys. But we also allow them to choose
reducers randomly if the number of computing nodes is too small.

7 Evaluation

We developed a parallel computing system, called V-Doc+, for our approach.
V-Doc+ is based on the Hadoop framework2, which provides an open-source
software for scalable and distributed computing. Every mechanism of MapRe-
duce corresponds to a process in Hadoop implementation. Given rich libraries,
programmers are allowed to implement customized data structure, input/output
record format, map/reduce function, and the way to partition.

In our program, each stage discussed above was implemented in one or more
map/reduce functions. Particularly, some supporting functions, such as word
statistics and combination, were added to the proper places in the whole imple-
mentation.

We ran our experiments on 10-node cluser and a Gigabit Ethernet intercon-
nect. The NameNode equipped with an Intel processor with six 2.80GHz cores
and 12M cache while the storage has 32GB memory and 2TB hard disk. For Job-
Tracker and slave, the CPU is all Intel Quad Core and 2.4GHz/12M cache. The
storage of JobTracker and slave is a little smaller than NameNode, which has
24GB memory and 2T hard disk. For compatibility consideration, we installed
0.21.0-version of Hadoop which is based on JDK v1.6.0 on Redhat Enterpreise
Linux Server 6.0 system. All stage of MapReduce process can be monitored in a
Web browser.

According to experiments with varied parameters and the optimal result gen-
erated, we configured the parameters as follows: for calculating description stage,
we set α1 = 1, α2 = 0.5, α3 = 0.25, α4 = 0 and β = 0.5. For exchanging infor-
mation of neighbors stage and matching virtual documents stage, γ = 0.1 and

2 http://hadoop.apache.org/

http://hadoop.apache.org/
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δ = 0.75 respectively. In practice, α should be configured differently due to the
fact of datasets. Particularly, if there is no differentiation between local names,
α1 should be lower or even be 0.

Preparation. Before starting experiments, some preprocessing were built.
Firstly, we cached stopwords and entities/words frequency statistics in the mem-
ory. Also, we formatted the file system before each experiment starting and made
sure that there was no other programs running on every computing node. For
distinguishing the source of the record easily, the identifers of entities, blank
nodes and RDF statements were attached with the ontology name.

7.1 Datasets

According to our investigation, we chose two datasets according to their sizes:
the Food Ontology in OAEI 2007 and FMA vs. GALEN. The reasons are as
follows:

1. Our approach is designed to match large ontologies. Due to the network
cost and repeated MapReduce job initialization, for small ontologies, it may
perform worse than other tools. So, large ontologies are more suitable.

2. The last Food Ontology version and the results of the participants were
published in OAEI 2007. So we cannot obtain this dataset after OAEI 2007.

3. Although OAEI publishes the campaign results of all tracks, such as Anatomy
whose size is also suitable, we find no reference mappings for other size-
suitable datasets so that we cannot evaluate their precisions and recalls.

Table 1 shows the statistical data of the Food Ontology which has lots of
multi-lingual texts. It contains two ontologies: NALT and AGROVOC. NALT
is developed by United Nations Food Organization and AGROVOC comes from
Agriculture Organization. After the end of OAEI 2007, the results of the partic-
ipants and the gold standard used to evaluate precision and recall are published
on the OAEI website3. We downloaded them and used the gold standard to
calculate precision, recall and value of F1 method in our experiment.

Table 1. Statistical data of the Food On-
tology

Ontology Classes and Properties Statements
NALT 42,326 174,278
AGROVOC 28,439 319,662

Table 2. Statistical data of FMA vs.
GALEN

Ontology Classes and Properties Statements
FMA 72,659 576,389
GALEN 9,596 59,753

For another dataset, we matched FMA ontology and GALEN ontology. FMA
is more larger than GALEN. Unfortunately, we cannot find other ontology
matching tools publishing their results of FMA vs. GALEN matching. Also,

3 http://oaei.ontologymatching.org/2007/

http://oaei.ontologymatching.org/2007/
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no gold standard was found. Consequently, for FMA vs. GALEN, we only ran
our experiment program on it and showed the run time and the speedup for
different numbers of compute nodes. The statistical data of FMA vs. GALEN is
showed in Table 2.

7.2 Experimental Results

The goal of our evaluation is threefold. Firstly, it is necessary to test precision,
recall and F-Measure although the strength of V-Doc+ is its good efficiency.
To test it, we investigated several ontology matchers and compared V-Doc+
with their performance. Secondly, we want to show how much the run time
was reduced comparing with the non-parallel matchers. Thirdly, we showed the
speedup on different computing nodes environment and presented the run time
for each stage in our approach.

We evaluated V-Doc+ on precision, recall and F-Measure on the Food On-
tology from OAEI 2007 [5] with some matchers: Falcon-AO, DSSim, RiMOM,
Prior+ and COMA. One is Falcon-AO [8], which integrated three matchers:
I-Sub, V-Doc and GMO, where V-Doc is a virtual-document-based technique
which runs in a non-parallel way and GMO is a graph matching technique based
on structural similarity. To match large ontologies with limited memory, Falcon-
AO also constructed a divide-and-conquer approach which can partition entities
into small clusters. DSSim [21] gave a multi-agent system to solve the ontology
matching problem while considering uncertainty. The main approach of DSSim
was to use different domains for finding ontology mappings. RiMOM [10] in-
tegrated multiple matchers to improve effectiveness by combining both literal
and structure features. Another matcher Prior+ [13] is an adaptive ontology
matching tool which was based on several different techniques, such as IR-based
similarity and neural network. Like Falcon-AO, COMA [3] also considered the
block matching and provided a fragment-based matcher to solve the large on-
tology matching problem. Differently, it partitioned data represented as trees.

F-Measure. We gave the performance of our experiment on the Food Ontology
using F-Measure to assess the results. Firstly, we calculated precision and recall
according to the gold standard that OAEI provides. Then, the value of F-Measure
was calculated using the following equation:

F -Measure =
2 ∗ Precision ∗Recall

Precision+Recall
(8)

Fig. 7 shows the result of comparison between V-Doc+ and other five matchers
on the Food Ontology. From the figure, we observe that the precision, recall
and f1-measure of V-Doc+ is no better than some of matchers. It mostly dues
to the combination of varied algorithms for other tools while one in V-Doc+.
However, they are all lower than Falcon-AO’s. The main reason is that Falcon-
AO combined several matchers, including I-Sub, V-Doc and GMO, where V-Doc
is a non-parallel implementation of the virtual document technique which has
the similar precision and recall with V-Doc+.
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Fig. 7. Precision, recall and F1-Measure on the Food Ontology

Run Time. The strength of our approach is its efficiency. Table 3 shows the run
times for 10-node cluster on the Food Ontology. V-Doc+ only spent ten minutes
on running. Among other matchers, the one cost the least is Prior+ which spent
1.5 hours while DSSim cost one week which is the slowest. Consequently, al-
though V-Doc+ does not achieve the best F-Measure, the parallelization makes
it much faster than others.

Table 3. Run times comparison among V-Doc+, Falcon-AO, DSSim, RiMOM and
Prior+ on the Food Ontology

V-Doc+ Falcon-AO DSSim RiMOM Prior+
Run time 10 min 6 h 1 week 4 h 1.5 h

To analyze each stage of the whole approach, we calculated the run time for
details presented in Fig. 8, where 10-node cluster is used. For both the Food
Ontology and FMA vs. GALEN, constructing descriptions and calculating sim-
ilarities spent the most of time.

In order to evaluate the speedup, we calculated the run time for varied cluster
sizes. For each dataset, we ran our program on 2, 4, 8, 10 nodes environment.
Fig. 9 shows the result. In the figure, we see that the run time keeps reducing
while increasing the number of compute nodes. But we also notice that the
growth trend of efficiency is reducing. Fig. 10 shows the speedup which also
reflects the reducing growth of efficiency with increased cluster size. From 8-node
to 10-node, the speedup tends to be unchanged. An interesting thing is that the
speedup on the Food Ontology is smaller than that on FMA vs. GALEN. The
main reason is that, for any dataset, our approach must repeat the MapReduce
process several times on constructing the descriptions for blank nodes. Although
other MapReduce process stages on the Food Ontology cost less time than that
on FMA vs. GALEN, they share the similar run time on the blank node stage,
which leads to a low speedup.
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Some small scale datasets (less than 1,000 classes and properties and less than
3,000 statements) have also been tested for the run time and the speedup, but
the result is not so good. Due to the network cost and the repeated reading of
files, the whole process cost as much time as other tools.

8 Conclusion

Matching large ontologies is an inevitable obstacle for data fusion and only a few
ontology matchers can finish matching task in a satisfiable run time. MapReduce
is a wildly used computing framework for parallel computation, and it has been
used in a number of fields. However, there is few studies on matching ontologies
using MapReduce. In this paper, we proposed a 3-stage parallelized ontology
matching method, called V-Doc+, using virtual document technique based on
the MapReduce framework, which largely reduces the run time from hours to
minutes.

Each stage of our approach establishes several MapReduce processes. For
blank nodes, the descriptions are updated iteratively by emitting neighbors to the
reducers. For similarities, we calculate the high-weight words in the descriptions
of entities by ranking the frequency and emit the entities to reducers. Also,
we considered the workload balance. The frequency of entities and words in
RDF statements is calculated in the preprocessing. Then the statistical data of
frequency is loaded in the memory to assist automatically partition.

For performance test, we conducted experiment on two large real datasets and
the results showed a good efficiency and moderate precision and recall. For the
Food Ontology from OAEI 2007, V-Doc+ used ten minutes to finish the task
while other tools spent hours even weeks. The speedup with increased computing
nodes is also illustrated.

Currently, a number of matchers obtain good precision and recall by combin-
ing multiple matchers. However, our approach is restricted to a certain linguistic
matching algorithm. In the future work, we look forward to integrating a new
parallelized algorithm based on ontology structures to improve precision and
recall.
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