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ABSTRACT
An object on the Semantic Web is likely to be denoted with
multiple URIs by different parties. Object coreference reso-
lution is to identify “equivalent” URIs that denote the same
object. Driven by the Linking Open Data (LOD) initiative,
millions of URIs have been explicitly linked with owl:sameAs

statements, but potentially coreferent ones are still consider-
able. Existing approaches address the problem mainly from
two directions: one is based upon equivalence inference man-
dated by OWL semantics, which finds semantically corefer-
ent URIs but probably omits many potential ones; the other
is via similarity computation between property-value pairs,
which is not always accurate enough. In this paper, we pro-
pose a self-training approach for object coreference resolu-
tion on the Semantic Web, which leverages the two classes
of approaches to bridge the gap between semantically coref-
erent URIs and potential candidates. For an object URI, we
firstly establish a kernel that consists of semantically coref-
erent URIs based on owl:sameAs, (inverse) functional prop-
erties and (max-)cardinalities, and then extend such kernel
iteratively in terms of discriminative property-value pairs in
the descriptions of URIs. In particular, the discriminability
is learnt with a statistical measurement, which not only ex-
ploits key characteristics for representing an object, but also
takes into account the matchability between properties from
pragmatics. In addition, frequent property combinations are
mined to improve the accuracy of the resolution. We imple-
ment a scalable system and demonstrate that our approach
achieves good precision and recall for resolving object coref-
erence, on both benchmark and large-scale datasets.

Categories and Subject Descriptors
H.3 [Information Systems]: Information Storage and Re-
trieval; D.2.12 [Software Engineering]: Interoperability;
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation, Performance

Keywords
Object coreference, object consolidation, self-training, prop-
erty combination, data fusion

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0632-4/11/03.

1. INTRODUCTION
The Semantic Web is an ongoing effort by the W3C Se-

mantic Web Activity, with the purposes of actualizing data
integration and sharing among different applications and or-
ganizations. To date, a number of prominent ontologies have
emerged for publishing data in specific domains, such as the
Friend of a Friend (FOAF), which define common identifiers
for classes and properties, in the form of URIs, which have
been widely used across data sources.

In the instance level, however, it is still far from achieving
agreement among data sources on the use of common URIs
to identify a specific object [11]. In fact, due to the decentral-
ized and dynamic nature of the Semantic Web, it frequently
happens that many different URIs from a variety of sources,
more likely originating from different RDF documents, de-
note one real-world object, i.e., represent the same identity.
Such examples exist in the domains of personal profiles, aca-
demic publications, encyclopedic or geographical resources,
etc.

Object coreference resolution, also known as object consol-
idation or identification [1], is a task for identifying multiple
URIs for the same real-world object, i.e., finding coreferent
URIs which represent a unique identity. Object coreference
resolution is important for data-centric applications, such as
fusing distributed descriptions of equivalent RDF resources
in data integration systems.

Driven by the Linking Open Data (LOD) initiative, mil-
lions of URIs from independent data sources have been ex-
plicitly interlinked with owl:sameAs statements [3]. Howev-
er, considering billions of object URIs on the current Seman-
tic Web, we observe that there still exist a large amount of
URIs which implicitly represent the same objects but have
not been connected with owl:sameAs yet. For example, at
least 70 URIs returned by Falcons search engine [2] denote
a person “Tim Berners-Lee”, the director of W3C, but only
five of them are linked with owl:sameAs.

In the field of Semantic Web, recent studies address this
problem mainly from two directions: one is based on utiliz-
ing standard OWL semantics, such as owl:sameAs [8] and
inverse functional properties (IFPs) [11]; while the other is
according to the intuition that two URIs represent the same
real-world object if they share some similar property-value
pairs [7, 13]. Generally speaking, the semantics-based way
can infer explicitly coreferent URIs but probably misses a
lot of potential candidates, while the similarity-based way is
not always accurate due to heterogenous ways for expressing
the same thing. Hence, a key issue for resolving object coref-
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erence on the Semantic Web is: How to combine these two
classes of techniques for building bridges between coreferent
URIs that we already have and potential candidates?
In this paper, we propose a self-training approach to lever-

aging the semantics-based and similarity-based ways for ad-
dressing the problem of object coreference resolution on the
Semantic Web. Self-training is a well-known class of semi-
supervised learning algorithms, in which a learner continues
labeling unlabeled examples and re-training itself on an ex-
tended labeled training set [28]. Self-training is suitable for
solving our problem, because there are abundant unresolved
object URIs, but the number of existing semantically coref-
erent ones is limited.
Specifically, taking an object URI as input, we firstly es-

tablish a kernel that consists of a set of semantically coref-
erent URIs based on owl:sameAs, (inverse) functional prop-
erties and (max-)cardinalities, and then iteratively extend
the kernel in terms of discriminative property-value pairs in
the descriptions of URIs. The discriminability of a property-
value pair is learnt based on a statistical measurement, which
not only exploits the key characteristics for representing an
object, but also takes into account the matchability between
properties from pragmatics. Furthermore, frequent property
combinations are mined to enhance the selection criteria of
properties during each iteration, so that the accuracy of the
resolution is further improved. We develop a scalable system
and evaluate its performance on a benchmark dataset from
OAEI 2010 and a large-scale dataset that is collected by Fal-
cons search engine in 2008. The experimental results demon-
strate that our approach achieves acceptable F-Measure on
both datasets, as compared with the performance of six rep-
resentative competitors.
The remainder of this paper is structured as follows. The

self-training framework of our proposed approach is firstly
outlined in Section 2. Section 3 introduces a method to find
semantically coreferent URIs in terms of OWL semantics.
Section 4 describes our self-training algorithm for resolving
object coreference with a statistical measurement to calcu-
late the discriminability of a property-value pair. Section 5
presents a way to mine frequent property combinations for
improving the accuracy of the resolution. Experimental re-
sults on the benchmark and large-scale datasets are report-
ed in Section 6. Section 7 discusses related work and finally
Section 8 concludes this paper with future work.

2. OVERVIEW OF THE APPROACH
The architecture of our proposed approach is outlined in

Fig. 1, which starts with an object URI u. After three pro-
cessing stages, the approach returns a set of coreferent URIs
that denote the same object as u.

1. Building a kernel. We construct a kernel of semanti-
cally coreferent URIs for u based on the OWL seman-
tics of owl:sameAs, owl:InverseFunctionalProperty
(owl:IFP for short), owl:FunctionalProperty (abbr.
owl:FP), owl:cardinality and owl:maxCardinality.
The five built-in vocabulary elements in OWL are fre-
quently used to infer the equivalence relation in many
systems [19], and combining them together establishes
a larger initial labeled training set.

2. Learning discriminative property-value pairs. It
is an iterative process, which firstly learns discrimina-
tive property-value pairs from some labeled coreferent

Figure 1: Overview of the proposed approach

URIs, and then uses the pairs to find more coreferent
ones. In accordance with previous works in [10, 13, 17],
we assume that coreferent URIs share several common
property-value pairs, and certain property-value pairs
are more useful for coreference resolution.

For any two URIs, we extract their involved property-
value pairs from the dereference documents,1 and com-
pare these values with a string matching algorithm I-
Sub [22]. If the similarity between two values is larger
than a threshold, then the related two properties have
a kind of commonality. For a set of coreferent URIs, we
select a property pair sharing most matchable values,
and assign the most common value to each property in
this pair. These two property-value pairs reflect some
discriminative characteristics for their denoted object,
and they are used to find more coreferent URIs.

3. Choosing properties based on frequent proper-
ty combinations. Some properties are more suitable
to use together for describing an object, such as longi-
tude and latitude for a coordinate. If we only choose
either of them for identifying coreferent URIs, the re-
sults tend to be inaccurate. Therefore, we apply asso-
ciation rule mining to discover frequent property com-
binations with heuristic refinement. For each learning
iteration, if any property in a frequent property combi-
nation is chosen, the rest property in the combination
with its most common value (if existing in the training
set) would be complemented. Consequently, these two
properties with associated values are used together for
searching new coreferent URIs.

Example 1. For illustration purposes, let us consider four
RDF documents containing candidate URIs for coreference
resolution in Fig. 2. Assuming that dbpedia:Beijing is the
input object URI for resolution. Through searching for owl:
sameAs statements, dbpedia:Beijing is semantically coref-
erent with geo:1816670. During training, (rdfs:label, “Bei-
jing”) and (geo:alternateName, “Beijing”) are learnt in the
first iteration as the most discriminative property-value pairs.
As a result, semweb:Beijing is found. In the second round,
(wgs84_pos:lat, “40”) is the most discriminative pair, and a
wrong coreferent result ex:New_York is discovered. But con-
sidering the frequent property combination {wgs84_pos:lat,
wgs84_pos:long}, ex:New_York would not be included any
more, because the values of wgs84_pos:long are completely
different (“116” for Beijing, while “74” for New York).

1The act of retrieving a representation of a resource identi-
fied by a URI is referred to as dereferencing that URI [15].
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dbpedia:Beijing rdfs:label “Beijing”;
owl:sameAs geo:1816670.

geo:1816670 wgs84_pos:long “116”;
wgs84_pos:lat “40”;
geo:alternateName “Beijing”;
geo:alternateName “Peking”.

semweb:Beijing rdfs:label “Beijing”;
wgs84_pos:lat “40”;
wgs84_pos:long “116”.

ex:New_York wgs84_pos:long “74”;
wgs84_pos:lat “40”.

Figure 2: An illustrating example

3. CONSTRUCTION OF THE KERNEL
Let U be a set of URI references (URIrefs), B be a set of

blank node IDs and L be a set of literals. A triple 〈s, p, o〉 ∈
(U ∪B)×U × (U ∪B ∪L) is called an RDF triple. An RDF
graph G is just a set of RDF triples.

The semantics of owl:sameAs indicates that all the URIs
linked with this property, in the form of 〈s, owl:sameAs, o〉,
have the same identity, implying that the subject and object
should be the same resource.

Definition 1. (The Same-as Relation) Let U be a set of
URIs. The same-as relation, denoted by S, is defined as the
minimal reflexive, symmetric relation on U , satisfying that:
(1) ∀s ∈ U , 〈s, s〉 ∈ S; (2) For s, o ∈ U , if there exists a triple
〈s, owl:sameAs, o〉, then 〈s, o〉 ∈ S and 〈o, s〉 ∈ S.

The semantics of an IFP guarantees that a value can only
be the value of this property for a single object, that is, two
separate objects are indirectly inferred to be identical based
on having the same value of that property.
To identify IFPs, we parse ontologies to find the properties

whose rdf:type is explicitly defined as owl:IFP. This is done
at the preprocessing time. Note that IFPs can be inferred in
a multitude of ways based on OWL semantics. For example,
the study in [25] did reasoning over pD* that includes rules
for handling owl:sameAs, owl:IFP and owl:FP axioms. But
anyone can define anything on the Semantic Web, inferring
IFPs across different sources may cause errors and inconsis-
tency. As an example, we could infer dc:title as an IFP in
the Falcons dataset. The work in [12] studied the reasoning
problem of new ontologies published on the Web redefining
the semantics of existing entities resident in other ontologies
(called ontology hijacking), which enlightens us to only use
dereferenceable IFPs in our approach for avoiding ontology
hijacking.

Definition 2. (The IFP Relation) Let U be a set of URIs.
The IFP relation, denoted by I, is defined to be the minimal
reflexive, symmetric relation on U , which satisfies the fol-
lowing conditions: (1) ∀s ∈ U , 〈s, s〉 ∈ I; (2) For s1, s2 ∈ U ,
if there are an IFP p and two triples 〈s1, p, o〉, 〈s2, p, o〉, then
〈s1, s2〉 ∈ I and 〈s2, s1〉 ∈ I.

To find the IFP relations, we match the values of objects
in the RDF triples with same IFPs as the predicates. If the

values are exactly the same by using a trivial string compar-
ison algorithm, we bridge an IFP relation between the sub-
jects of these triples. This approach has been demonstrated
to be feasible in [11, 24]. Besides, the lexical forms of some
literals can be empty, e.g., the values of foaf:mbox_sha1sum
are blank in a few triples. We omit these triples for avoiding
wrong coreference.

Due to several heterogenous ways for expressing email ad-
dresses, we use an ad hoc method to identify identical email
addresses for two popular IFPs: foaf:mbox and foaf:mbox_

sha1sum. Given an email address, we compute its sha1sum
value and utilize foaf:mbox_sha1sum to find new coreferent
URIs. We bridge the IFP relations between the URIs using
the two IFPs.

The way of using functional properties (FPs) to find coref-
erent URIs is similar to the way for IFPs. We firstly obtain
the dereferenceable properties whose types are explicitly de-
fined as owl:FP, and then use these FPs to construct the FP
relations.

Definition 3. (The FP Relation) Let U be a set of URIs.
The FP relation, denoted by F, is defined to be the minimal
reflexive, symmetric relation on U , which satisfies: (1) ∀o ∈
U , 〈o, o〉 ∈ F; (2) For o1, o2 ∈ U , if there are a FP p and two
triples 〈s, p, o1〉, 〈s, p, o2〉, then 〈o1, o2〉 ∈ F and 〈o2, o1〉 ∈ F.

The cardinality constraint owl:cardinality (or owl:max-
Cardinality) is a built-in OWL property which links a re-
striction class to a data value. A restriction having an owl:

cardinality (or owl:maxCardinality) constraint describes
a class of all objects that have exactly (at most) N semanti-
cally distinct values for the property concerned, where N is
the value of the cardinality constraint. If N = 1, its seman-
tics is similar to FPs (however, with respect to a particular
class) and can be applied to produce coreferent URIs.

Definition 4. (The Cardinality Relation) Let U be a set of
URIs. The cardinality relation, denoted by C, is defined as
the minimal reflexive, symmetric relation on U , which satis-
fies that: (1) ∀o ∈ U , 〈o, o〉 ∈ C; (2) For o1, o2 ∈ U , if there
exist a (max-)cardinality restriction 〈c, owl:onProperty, p〉,
〈c, owl:cardinality, “1”〉 (or 〈c, owl:maxCardinality, “1”〉),
where c, p are the restriction class and property respective-
ly, and three triples 〈s, p, o1〉, 〈s, p, o2〉 and 〈s, rdf:type, c〉,
then 〈o1, o2〉 ∈ C and 〈o2, o1〉 ∈ C.

Based on the same-as, IFP, FP and cardinality relations,
we define the equivalence relation as follows.

Definition 5. (The Equivalence Relation) Let S, I,F,C be
the same-as, IFP, FP and cardinality relations on a set of
URIs U , respectively. K is the transitive closure on S ∪ I ∪
F ∪ C.

It is worth noting that K is an equivalence relation on U ,
because S, I,F,C are all reflexive and symmetric.

Definition 6. (Kernel) Let U be a set of URIs. For a URI
u ∈ U , the equivalence class [u]K = {v ∈ U | 〈u, v〉 ∈ K},
under the equivalence relation K, is called a kernel of u.

Based on the definition of the kernel above, it is straight-
forward to implement a corresponding algorithm for finding
semantically coreferent URIs.
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4. SELF-TRAINING
For an RDF graph G, we define three operations on G for

simplifying our notations:

Subj(G) = {s | 〈s, p, o〉 ∈ G}, (1)

Pred(G, sk) = {p | 〈sk, p, o〉 ∈ G}, (2)

Obj(G, sk, pi) = {o | 〈sk, pi, o〉 ∈ G}. (3)

Our object coreference resolution algorithm is depicted in
Algorithm 1, which follows a traditional self-training frame-
work [28]. Inputting a labeled kernel C for an object URI
u and a set H of unlabeled URIs, the goal of the algorithm
is to iteratively learn the most discriminative property-value
pairs for identifying potentially coreferent URIs in H. In the
case that there are too many coreferent URIs in C, the al-
gorithm randomly picks up a subset D of C for reducing the
computational costs. We choose |D| = 200 in terms of the
computational capability of our personal computers. The al-
gorithm stops when the iteration times exceeds a maximum
number K or all the property pairs have been checked.

Algorithm 1: A coreference resolution algorithm

Input: A kernel C for an object URI u in an RDF
graph G, and a set H of unlabeled URIs in G.

Output: An extension E, after self-training.
1 begin
2 Initialize two empty checked lists PP and PV ;
3 Copy C to E for training;
4 repeat
5 Create a pool D by randomly choosing at most

N URIs in E;
6 Select the most matchable property pair

(pi, pj) /∈ PP by Eq. (4), s.t.
pi ∈ ⋃

s∈D

Pred(G, s), pj ∈ ⋃
t∈D
t �=s

Pred(G, t);

7 if (pi, pj) = NULL then break;
8 Assign the most common values oi, oj to pi, pj

resp. by Eq. (6), s.t. (pi, oi) or (pj , oj) /∈ PV ,
oi ∈ ⋃

s∈D

Obj(G, s, pi), oj ∈ ⋃
t∈D

Obj(G, t, pj);

9 if oi = NULL and oj = NULL then
10 Push (pi, pj) into PP , and go back to Line 6;
11 end
12 if oi �= NULL then
13 Apply (pi, oi) to label a set P of unlabeled

URIs, s.t. P = {s ∈ H | 〈s, pi, oi〉 ∈ G};
14 if (pi, oi) is discriminative by Eq. (7) then
15 Add P to E, and remove P from H;
16 end

17 end
18 if oj �= NULL then
19 Apply (pj , oj) to label a set Q of unlabeled

URIs, s.t. Q = {s ∈ H | 〈s, pj , oj〉 ∈ G};
20 if (pj , oj) is discriminative by Eq. (7) then
21 Add Q to E, and remove Q from H;
22 end

23 end
24 Push (pi, oi), (pj , oj) into PV ;

25 until iteration times > K;
26 return E;

27 end

Similar to most self-training algorithms, there exist three
key measures/parameters that should be discussed: (1) How
to measure the discriminability of a property-value pair? (2)
How to avoid error accumulation during resolution? and (3)
How to determine the maximum iteration times? We answer
these questions in the rest of this section.

We propose a three-step way to measure the discriminabil-
ity of each property-value pair. The intuition behind is that,
the more a property-value pair is shared by a set of corefer-
ent URIs, the more likely it represents some discriminative
characteristics for the denoted real-world object. However,
different URIs often use different properties to describe the
same value. For example, foaf:name and dc:title are both
widely used for describing a person’s name. Given a set of
coreferent URIs, ontology matching techniques [6] could be
adopted to discover matchable properties from their values
(a so-called extensional way), which takes into account the
matchability between properties from pragmatics. The most
matchable property pair with associated values can be con-
sidered as the most important characteristics supported by
the training set to identify coreferent URIs.

To formalize, for an RDF graph G, the matchability be-
tween two properties pi, pj in a labeled set D of G is com-
puted by:

Match(pi, pj) =
∑

s,t∈D
s�=t

|{(o, o′) | o ∈ Obj(G, s, pi),

o′ ∈ Obj(G, t, pj), I-Sub(o, o
′) > δ}|, (4)

I-Sub(o, o′) = Comm(Desc(o),Desc(o′))

−Diff(Desc(o),Desc(o′))

+Winkler(Desc(o),Desc(o′)), (5)

where I-Sub is an improved string comparison method [22],
whose novelty is that the similarity between two strings is
relevant to their commonalities as well as their differences.
Winkler is a correction coefficient. When o is a URI, Desc(o)
extracts its local name, which is a string after the last hash
“#” or slash “/” of the URI; when o is a literal, Desc(o) gets
its lexical form. In addition, pi, pj can be the same property
which is used by different URIs. The most matchable prop-
erties are the property pair that has the maximum number
of matchable values.

Because a property may have different values, we assign
the most common one to each property in a property pair.
The matchability of values is also considered, because some
value for a property is prevalent in the real world but little
supported by a specific training set. For a matchable prop-
erty pair (pi, pj) in a labeled set D of G, the most common
value pair (oi, oj) for (pi, pj) is computed as follows:

(oi, oj) = argmax
(o,o′)

|{(s, s′) ∈ D ×D | I-Sub(o, o′) > δ,

〈s, pi, o〉 ∈ G, 〈s′, pj , o′〉 ∈ G}|. (6)

This equation allows oi, oj to be the same value, and s, s′

to be the same as well.
The discriminability of a property-value pair is calculated

in terms of the number of potentially coreferent URIs that
can be found by using such property-value pair. Specifically,
let (pi, oi) be a property-value pair in G, the discriminability
of (pi, oi) is calculated as follows:
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Discr(pi, oi) =
|{s ∈ D | 〈s, pi, oi〉 ∈ G}|
|{s ∈ H | 〈s, pi, oi〉 ∈ G}| , (7)

whereD,H are labeled and unlabeled sets in G, respectively.
Here, we use a threshold based on our experiments to decide
whether a property-value pair is discriminative or not.

Example 2. Considering Fig. 2, the kernel includes dbpe-
dia:Beijing and geo:1816670. In terms of Eq. (4), (rdfs:
label, geo:alternateName) is the most matchable property
pair in the first iteration, and “Beijing” is the most common
value for them. (rdfs:label, “Beijing”) and (geo:alterna-
teName, “Beijing”) are the two discriminative property-value
pairs for identifying coreferent URIs.

To avoid error accumulation, the selection of discrimina-
tive property-value pairs reduces the execution of improper
extension. In addition, frequent property combinations are
mined for further improvement, which is given in the next
section. Regarding the maximum number of iterations, we
observed the average number of property-value pairs asso-
ciated with an object in a large-scale dataset containing 76
million URIs, and found that in average an object is associat-
ed with about eight property-value pairs, so we set K = 10,
which is a little larger than this average.

5. IMPROVEMENT BY FREQUENT PROP-
ERTY COMBINATIONS

In ontology development, some properties are designed to
be used together, e.g., wgs84_pos:long and wgs84_pos:lat;
while only use a part of them cannot represent the intended
semantics. To improve the accuracy of our coreference reso-
lution, we mine this kind of property combinations and use
them as external knowledge to enhance the selection criteria
of properties for constructing property-value pairs.
We propose to tailor association rule mining techniques to

obtain binary associations between properties, which means
that each property combination is composed of exactly two
different properties. We believe that binary associations are
more prevalent and easy to understand, although association
rule mining is naturally applicable for n-ary associations.
A binary association rule expresses that the occurrence

of a property statistically indicates the presence of another
property for the same object URI with certain confidence,
which can be transformed into a conditional probability. We
prefer the co-occurrence relation for property combinations,
which requires that not only the occurrence of one property
implies the other, but vice versa. The co-occurrence relation
could be interpreted as an indicator of interdependency of
two properties. More specifically, for two properties pi, pj in
an RDF graph G, the confidence between pi, pj is computed
as follows:

Conf(pi, pj) = min{Conf(pi ⇒ pj),Conf(pj ⇒ pi)}, (8)

Conf(pi ⇒ pj) = Pr(pj | pi) = Support(pi ∪ pj)

Support(pi)

=
|{s ∈ Subj(G) | pi, pj ∈ Pred(G, s)}|
|{s ∈ Subj(G) | pi ∈ Pred(G, s)}| , (9)

when Conf(pi, pj) is greater than a predefined threshold, we
say {pi, pj} is a frequent property combination, reflecting its

significance in statistics. Different from the goal of conven-
tional association rule mining, we select a high threshold in
our case (e.g., 0.98 in our experiments), which tends to find
common combinations in data, rather than some surprising
or obscure patterns.

Previous studies demonstrated that standard association
rule mining techniques can discover numerous spurious pat-
terns when being applied to random data and to real-world
data [27]. From our dataset, we also observed a similar phe-
nomenon. For example, several social networking sites such
as hi5.com and livejournal.com exported a large volume
of RDF data for describing users, which led to many spu-
rious frequent property combinations, such as {foaf:name,
foaf:mbox}. These combinations are not tightly co-related
in semantics, and using them together can cause over-fitting
in self-training. Therefore, we propose two heuristic rules to
refine the pre-found combinations.

Firstly, we investigate the data ranges of properties de-
fined in their dereference documents, and assume that two
properties in a frequent property combination are co-related
in semantics if their ranges are compatible. A data range be-
longs to one of the six categories: a URI, a float, an integer,
a string, a date time and a thing, where thing is compatible
with the other five disjoint categories. We also remove the
frequent property combinations that contain built-in prop-
erties in RDF(S), OWL and DC.

Secondly, we perform a statistical analysis for the use of
properties and their values. The intuition behind this anal-
ysis is that unrelated properties may exhibit divergence in
numbers of assigned values associated with objects. For an
RDF graph G, let pi be a property used as a predicate in
G, AV () measures the average number of unique values that
pi has, while AC() measures the average cardinality that an
object uses pi:

AV(pi) =

| ⋃
s∈Subj(G)

Obj(G, s, pi)|
∑

s∈Subj(G)

|Obj(G, s, pi)| , (10)

AC(pi) =

∑
s∈Subj(G)

|Obj(G, s, pi)|

|{s ∈ Subj(G) | pi ∈ Pred(G, s)}| . (11)

If AC(pi) 	 1, pi is called a quasi-functional property in
[13]. When two properties are semantically co-related, they
should have close values of AV s and ACs, e.g., the difference
is less than 0.1 in our experiments.

Example 3. Considering the example in Fig. 2, the aver-
age number of values and the average cardinality for wgs84_
pos#lat are:

AV (wgs84_pos#lat) =
1

3
, AC(wgs84_pos#lat) = 1.

The refined frequent property combinations are stored be-
forehand. In self-training, when the most matchable prop-
erty pair (pi, pj) is selected (see Line 6 in Algorithm 1), we
search the frequent property combinations for pi, pj , respec-
tively. If both of them have counterparts in these frequent
property combinations, say (p′i, p

′
j), their most common val-

ues (if exists) are extracted. Therefore, {pi, p′i} and {pj , p′j}
with their associated values are used for finding coreferent
URIs. It usually happens when pi, pj are the same property,
and p′i, p

′
j are probably also the same.
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Table 1: Statistical Data of Benchmark Dataset
Data file 1 Data file 2 Ref. mappings

Person1 2,000 URIs 1,000 URIs 500
Person2 2,400 URIs 800 URIs 400
Restaurants 339 URIs 2,256 URIs 112

Sampling. It is very difficult, if not impossible, to analyze
billions of RDF triples to calculate accurate AV s and ACs
for all properties. As an adaption, we propose a class-based
sampling method for dealing with the scalability issue. For
a class c, the objects whose types are explicitly defined as c
are extracted. If the number of the objects is too small, c is
no longer considered because it is insignificant in statistics;
while if the number is too large, a subset of the objects are
randomly chosen. To some extent, this method avoids the
skewed sampling, i.e., guarantees the coverage so that a few
common classes, such as foaf:Person, do not dominate the
sample set. For our large-scale dataset in the experiments,
we filter the classes with less than 300 objects, and for each
class, we extract at most 1,000 objects to form the sample
set. The entire sample set contains 1,199,764 objects, which
is used for mining frequent property combinations. However,
note that the discussion on different sampling techniques is
out of the scope of this paper.

6. EVALUATION
We implemented a scalable system, called ObjectCoref, for

our proposed method. In this section, we report the experi-
mental results on a benchmark dateset (PR) in OAEI 2010
and on a large-scale dataset collected by Falcons until Sept.
2008. All the tests were carried out on an Intel Core2 Duo
2.4GHz CPU, 4GB memory with Windows 7 and Java 1.6.
The datasets were run on four Xeon Quad 2.4GHz CPUs,
8GB memory with Redhat Linux Enterprize Server 5.4 and
MySQL 5.0. The experimental results are downloadable at
our website,2 and a part of them about the benchmark test
are cited from OAEI 2010 [5].

6.1 Benchmark Test
The PR dataset is a small real dataset, which includes two

collections of RDF data files concerning persons (denoted by
Person1 and Person2, respectively) and one collection about
restaurants. OAEI 2010 organizers provided reference map-
pings for each collection, where each mapping contains two
URIs from different data files that denote the same person
or restaurant. The statistics of the PR dataset are listed in
Table 1.
The goal of our evaluation on the dataset is twofold. First,

we want to test various values for the parameters in Object-
Coref and apply the best ones to the following experiments.
Second, we can compare ObjectCoref with other systems on
the same dataset. The well-known Precision, Recall and F-
Measure were used, where F-Measure is a linear combination
of Precision and Recall:

F-Measure =
2 ∗ Precision ∗ Recall

Precision + Recall
. (12)

Because all the URIs in the PR dataset are synthetic, no
kernel can be established. Instead, we randomly chose 20 ref-
erence mappings from each collection and used them as the

2http://ws.nju.edu.cn/objectcoref/www2011.zip
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Figure 3: F-Measures versus number of iterations
on the benchmark dataset

initial labeled set for training. To fit the dataset, we slightly
modified the goal of our self-training algorithm by skipping
the assignment of the most common values to properties,
since each property only has one value for a URI. Moreover,
all the URIs are described by a set of fixed properties, thus
frequent property combinations cannot be mined.

Learning curves. The learning curves are shown in Fig. 3,
where iteration 0 denotes the initial training set. Based on
the figure, we observed that F-Measures drastically risen up
in the first one or two iterations, and then dropped sharply.
This demonstrates that one or two properties are accurate
enough for identifying a person or a restaurant. For identi-
fying the same person, soc_sec_id and phone_number were
learnt; and for a restaurant, phone_number was discrimina-
tive. If we continued the training, improper properties were
chosen, e.g., age for Person1 and Person2, which led to many
wrong coreferent URIs.

From the learning, we observed that 0.95 is a good value
for I-Sub to determine if two strings are similar enough. We
also observed that 0.125 is a proper threshold for measuring
a property-value pair is discriminative or not, which means
that using such property-value pair, if the number of poten-
tially coreferent URIs is eight times more than that in the
labeled set, this pair would not be considered for resolution.
We used these two thresholds throughout the following ex-
periments.

F-Measure. We compared the results of ObjectCoref with
other four coreference resolution systems, namely ASMOV,
CODI, LN2R and RiMOM, which also submitted their re-
sults on the PR dataset to OAEI. ASMOV [16] and CODI
[20] employed similarity-based matchers to obtain coreferent
URIs and performed logical inference to remove inconsistent
results. LN2R [21] integrated a knowledge-based matcher to
find semantically coreferent URIs and adopted a similarity
propagation algorithm to generate similarities. RiMOM [18]
is a purely similarity-based system, which integrated many
matchers to exploit a range of characteristics for both con-
cepts and instances. All of them can only deal with pairwise
instances, which are precisely called instance matching sys-
tems. We discuss their details in Section 7.
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Figure 4: Comparison on F-Measure among Object-
Coref, ASMOV, CODI, LN2R and RiMOM on the
benchmark dataset

The comparison results on F-Measure is depicted in Fig. 4.
From the figure, we observed that ObjectCoref achieved the
best F-Measure in average on the PR dataset. In particular,
the Precision of ObjectCoref is quite good (100% in all the
three collections), because we learnt the most discriminative
properties for the resolution. Notice that our F-Measure on
the restaurant track in this paper is slightly better than the
result published by OAEI [5], as we corrected a parsing bug
for addresses in our programs after participating in OAEI.
Furthermore, we took advantage of a small number of ref-
erence mappings as the training set and the use of optimal
iteration times, which are not against by the OAEI organiz-
ers. If other systems can make use of reference mappings,
their performance may be improved as well.

6.2 Large-Scale Test
The statistical data of the large-scale dataset is listed in

Table 2. The dataset contains 596,418,935 RDF triples (tr.)
in 11,719,608 RDF documents referring to 76,389,570 URIs,
which equals an average of 7.81 RDF triples per URI. This
suggests that each URI is involved in about eight property-
value pairs, so we set the maximum iteration times K to
10, which is a little larger than the average. Note that this
value is dataset-dependent and no single value would yield
similar results on multiple different datasets. We will study
how to automatically determine the optimal iteration times
in our future work.
By investigating the dataset, 7,880,906 owl:sameAs triples

without blank nodes were found, where most of them come
from http://bio2rdf.org and http://dbpedia.org. Con-
sidering the purposes of ObjectCoref, blank nodes cannot
provide any meaning outside their original scopes. So we ex-
cluded the same-as (and IFP, FP, cardinality) relations hav-
ing blank nodes in our experiments. This dataset contains
1,791 IFPs, in which 413 ones (23%) can be dereferenceable.
27,686 RDF triples using the 413 IFPs without blank nodes
were retrieved, where most of them are about foaf:mbox_

sha1sum (11,903) and foaf:mbox (2,981). It was found that
11,760 RDF triples hold the IFP relations with others. Re-
garding FPs, we obtained 11,765 dereferenceable FPs from
21,067 ones in total, and derived 35,652 RDF triples with-

Table 2: Statistical Data of Large-Scale Dataset
URIs Same-as tr. IFP tr. FP tr. Cardinality tr.

76,389,570 7,880,906 27,686 35,652 34,635

Table 3: Sample URIs
# URI
1 http://www.w3.org/People/Berners-Lee/card#i
2 http://www.cs.vu.nl/...#Frank+van+Harmelen
3 http://data.semanticweb.org/person/chris-bizer
4 http://dbpedia.org/resource/United_States
5 http://dbpedia.org/resource/New_York_City
6 http://dbpedia.org/resource/Berlin [city]
7 http://dbpedia.org/resource/Semantic_Web
8 http://bio2rdf.org/accession:af048837
9 http://dbpedia.org/resource/Apple_Inc. [company]

10 http://dbpedia.org/resource/Jaguar [mammal]

out blank nodes, in which 440 triples have the FP relations
with others. Additionally, we discovered 34,635 triples with-
out blank nodes that use 113 dereferenceable properties in
cardinalities, where 6,123 ones have the cardinality relations
with others.

We collected 364,408 query logs from Falcons and chose 10
popular query URIs, which are listed in Table 3. These URIs
cover a wide range of real world domains (e.g., people, geog-
raphy), and all of them have semantically coreferent URIs
for establishing kernels. The local names of some URIs have
several meanings. For instance, “apple” can be either a fruit
or a computer brand. We selected each URI having a clear
meaning among its polysemic local names, to find whether
or not ObjectCoref can identify the correct coreferent URIs
and how well.

In this test, we evaluated Precision and Relative recall of
ObjectCoref for resolving object coreference on the Semantic
Web. Relative recall is the number of coreferent URIs re-
trieved by one system divided by the total number of unique
coreferent ones from all systems, which offers a practical, if
imperfect, solution to the problem that the total number of
results is unknown. This measure has been widely applied
to evaluate the quality of large ontology matching [6]. For
Precision, we employed three students to take peer reviews
on the coreferent URIs returned by each system. A student
judged whether a returned URI is coreferent with the input,
in terms of the provided evidences like the equivalence rela-
tions, the descriptions in the dereference documents.

Frequent property combinations. By applying the Apri-
ori algorithm to perform association rule mining, we discov-
ered 9,610 frequent property combinations with confidences
greater than 0.98. Then, we used the two heuristic rules to
refine the combinations and retained 349 ones, which were
used as external knowledge for improving the accuracy of our
resolution. Some sample frequent property combinations are
listed in Table 4, where the average cardinalities are all 1.0,

Table 4: Frequent Property Combinations
Frequent property combinations AV s ACs
{wgs84_pos#long, wgs84_pos#lat} {.93, .92} {1.0, 1.0}
{foaf:surname, foaf:givenname} {.83, .81} {1.0, 1.0}
{foaf:img, foaf:depictioin} {.52, .52} {1.0, 1.0}
{dbpedia:preceded, dbpedia:succeeded} {.48, .48} {1.0, 1.0}
{uniprot:height, uniprot:weight} {.38, .37} {1.0, 1.0}
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Figure 5: Comparison on Precision among Object-
Coref, ObjectCoref-FPC, sameas.org and sig.ma on
the large-scale dataset
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Figure 6: Comparison on Relative recall among Ob-
jectCoref, ObjectCoref-FPC, sameas.org and sig.ma
on the large-scale dataset

indicating that each property is used once in average for a
single object. For instance, a location usually has only one
longitude. On the contrary, the average number of values for
each property is less than 1.0, which reflects that different
URIs have same property-values.

Precision & Relative recall. In the experiment, we used
three systems for comparison. ObjectCoref-FPC represents
our system performing refinement based on frequent proper-
ty combinations, while sameas.org3 and sig.ma4 [23] are two
online services for object coreference resolution. sameas.org
investigated a number of properties that explicitly define the
equivalence relation, e.g., owl:sameAs and skos:exactMatch.
sig.ma aimed at data mashup and can only accept keyword
queries, so in this experiment we fed it the local names of
our sample URIs.

3http://sameas.org/
4http://sig.ma/

Table 5: Summary of Average F-Measures
Benchmark Large-scale5

ObjectCoref 0.95 0.62
ASMOV 0.68
CODI 0.66
LN2R 0.90
RiMOM 0.93
sameas.org 0.54
sig.ma 0.21

The Precision and Relative recall of the four systems are
depicted in Fig. 5 and Fig. 6, respectively. Based on the fig-
ures, we observed that ObjectCoref and sameas.org achieved
similar Precisions in most cases, while their Relative recalls
are quite different, because all the systems were run on dif-
ferent datasets, and the returned results only had a part of
overlap. sig.ma did not perform well, because the keyword-
based query brought ambiguity, and it limited the number
of returned URIs per input no larger than 20. For the 10
queries, three most matchable properties were rdfs:label,
foaf:name and dc:title. For example, (rdfs:label, “Tim
Berners-Lee”) and (foaf:name, “Tim Berners-Lee”) were two
discriminative property-value pairs in #1 for extension.

When frequent property combinations were integrated in-
to the system, the Precisions in four cases were further im-
proved, namely #2, #4, #6 and #9. Notice that the Rel-
ative recalls slightly decreased, due to the deletion of some
wrong coreferent URIs. In #2, without frequent property
combinations, ObjectCoref only used foaf:firstName and
found wrong persons like “Frank Ohrtmann” or “Frank Ley-
mann”, but after considering frequent property combination
{foaf:firstName, foaf:lastName}, such wrong coreferent
URIs cannot be found. But in #10, (rdfs:label, “Jaguar”)
was selected as a discriminative property-value pair, which
caused wrong resolution. Furthermore, we did not find any
frequent property combination for distinguishing the mam-
mal “Jaguar” with the car brand or a chemical package, so
the Precision of ObjectCoref-FPC remained the same. The
average number of coreferent URIs found by ObjectCoref-
FPC is 68.4, while the average size of the kernels is 10.3.

Average resolution time. We randomly chose 5,000 sam-
ple URIs from our dataset, and repeated the experiment 10
times to measure the average resolution time for Object-
Coref. The total resolution time is about 12 hours, equating
to 8.6 seconds per URI. But the time spent on a few URIs
is much longer than this average. It took several minutes to
complete an object URI with tens of potentially coreferent
URIs. This indicates that, although ObjectCoref performs
reasonably efficient when starting with a majority of URIs
in our dataset, it is still hard to resolve all the URIs on the
Semantic Web based on the current state of ObjectCoref.

Summary. The average F-Measures on the benchmark and
large-scale datasets is illustrated in Table 5, depicting that
ObjectCoref performed best in both datasets. As compared
with the average performance of the other competitors, our
approach achieved 18% and 25% increasing in F-Measure,
respectively.

5The F-Measure on the large-scale dataset is the linear com-
bination of Precision and Relative recall.
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7. RELATED WORK
Object coreference resolution is an important task for es-

tablishing semantic interoperability and realizing data inte-
gration. In the area of Semantic Web, researchers addressed
this problem mainly from two directions: one is based upon
OWL semantics inference. Glaser, et al. [8] implemented a
coreference resolution service (CRS) mainly by owl:sameAs.
The works in [11, 23] performed large-scale object consolida-
tion in terms of the analysis of IFPs, respectively. Säıs, et al.
[21] designed a new language RDFS+ for expressing corefer-
ence, which integrated FPs, IFPs and owl:disjointWith in
OWL as well as SWRL rules in RDFS. The KnoFuss archi-
tecture [19] combined the use of owl:sameAs, IFPs, FPs and
owl:differentFrom for resolving coreference. Additionally,
some works analyzed the state of owl:sameAs in the current
Semantic Web or Linked Data [3, 10].
The other class of studies is based on the assumption that

URIs are denoting the same real-world object if they share
some common property-value pairs. Ferrara, et al. [7] reused
an ontology matching tool HMatch to compare the minimal
sets of assertions for describing different URIs. Hogan, et al.
[13] proposed a statistical approach for identifying “quasi”-
key properties for object consolidation over Linked Data. In
addition, a number of works called instance matching (e.g.,
[14, 16, 18, 20, 26]) computed similarities between instances
based upon matching their property-values. Except [13], the
rest studies aforementioned assumed that the input is just
pairwise instances and their computational costs are usually
high, so it is difficult to adapt them to Web-scale.
For architecture, our proposed framework is similar to the

work in [9], which dedicated a large-scale clustering to on-
tology terms. It used synonyms to set up a kernel, and then
extended the kernel with similar terms in labels and identi-
fiers. Both of us adopted a bootstrapping running mode, but
[9] merely executed the extension one time. Furthermore, [9]
performed extension only based on labels and local names,
while our self-training framework is more adaptive for vari-
ous domains. In addition, KnoFuss and LN2R [20] searched
semantically coreferent URIs and proposed similarity prop-
agation algorithms for refinement.
A key issue in our self-training algorithm is to measure the

discriminability for property-value pairs. Hogan, et al. [13]
analyzed the global distribution for properties and their as-
sociated values to count the discriminability for a property-
value pair. Different from [13], our measurement is not static
and further considered the matchability between properties,
because a property in different domains may have different
discriminability, while different properties could be used for
expressing a similar meaning. In addition, we involved fre-
quent property combinations to improve the accuracy of the
resolution, where the analysis on the average cardinalities of
properties was inspired by [13].
Besides the Semantic Web community, identifying dupli-

cate entities, which is also under the names of record linkage,
duplicate detection, coreference resolution and many others,
has been extensively studied in both database and natural
language processing areas [1, 4]. These works are in general
treated as similarity-based due to a lack of formal semantics
to define equivalence.

8. CONCLUDING REMARKS
The contributions of this paper are summarized as follows:

• We proposed a self-training approach for object coref-
erence resolution on the Semantic Web, which first con-
structed a kernel of semantically coreferent URIs for a
given object URI based on OWL semantics, and then
iteratively extended this kernel in terms of discrimi-
native property-value pairs. For further improving the
accuracy of the resolution, frequent property combina-
tions were mined and injected in the learning process.
To the best of our knowledge, our proposed approach
is the first attempt to adopt self-training for bridging
the gap between semantically coreferent URIs and po-
tential candidates, which is important for the maturing
Web of Data.

• We introduced a statistical measurement to learn the
discriminability of property-value pairs, which not only
exploited key characteristics for representing an object,
but also considered the matchability between proper-
ties from pragmatics.

• We applied association rule mining to discover frequent
property combinations, which were further filtered by
comparing the data ranges of properties in each com-
bination and the distribution information on the use of
properties as well as their values. The frequent proper-
ty combinations avoided error accumulation during the
training and improved the accuracy of the resolution.

• We evaluated our proposed approach on both a bench-
mark dataset in OAEI 2010 and a large-scale dataset
that is collected by Falcons search engine in 2008. The
experimental results showed that our approach achieved
good F-Measure on the two datasets, as compared with
the performance of six representative systems.

In the near future, we will perform more experiments for
parameter setting in our self-training approach, such as de-
termining the optimal iteration times. In the long term, we
hope to abstract our object-driven approach to the class lev-
el, which will identify discriminative properties for different
classes in different domains. Furthermore, we would like to
design the co-training mechanism to improve the robustness
of our coreference resolution algorithm. In addition, we will
use our approach to analyze the coreference phenomenon in
Linked Data.
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