
Relevance Search over Schema-Rich Knowledge Graphs
Yu Gu

ygu@smail.nju.edu.cn
National Key Laboratory for Novel

Software Technology
Nanjing University, China

Tianshuo Zhou
tianshuo.zhou@smail.nju.edu.cn
National Key Laboratory for Novel

Software Technology
Nanjing University, China

Gong Cheng
gcheng@nju.edu.cn

National Key Laboratory for Novel
Software Technology

Nanjing University, China

Ziyang Li
zyli@smail.nju.edu.cn

National Key Laboratory for Novel
Software Technology

Nanjing University, China

Jeff Z. Pan
jeff.z.pan@abdn.ac.uk

Department of Computing Science
University of Aberdeen, UK

Yuzhong Qu
yzqu@nju.edu.cn

National Key Laboratory for Novel
Software Technology

Nanjing University, China

ABSTRACT
Relevance search over a knowledge graph (KG) has gained much
research attention. Given a query entity in a KG, the problem is
to find its most relevant entities. However, the relevance function
is hidden and dynamic. Different users for different queries may
consider relevance from different angles of semantics. The ambi-
guity in a query is more noticeable in the presence of thousands
of types of entities and relations in a schema-rich KG, which has
challenged the effectiveness and scalability of existing methods. To
meet the challenge, our approach called RelSUE requests a user
to provide a small number of answer entities as examples, and
then automatically learns the most likely relevance function from
these examples. Specifically, we assume the intent of a query can
be characterized by a set of meta-paths at the schema level. RelSUE
searches a KG for diversified significant meta-paths that best char-
acterize the relevance of the user-provided examples to the query
entity. It reduces the large search space of a schema-rich KG using
distance and degree-based heuristics, and performs reasoning to
deduplicate meta-paths that represent equivalent query-specific
semantics. Finally, a linear model is learned to predict meta-path
based relevance. Extensive experiments demonstrate that RelSUE
outperforms several state-of-the-art methods.

CCS CONCEPTS
• Information systems→Datamining;Retrievalmodels and
ranking; •Computingmethodologies→ Semantic networks;

KEYWORDS
Relevance search, knowledge graph, meta-path, reasoning
ACM Reference Format:
Yu Gu, Tianshuo Zhou, Gong Cheng, Ziyang Li, Jeff Z. Pan, and Yuzhong Qu.
2019. Relevance Search over Schema-Rich Knowledge Graphs. In The Twelfth

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5940-5/19/02. . . $15.00
https://doi.org/10.1145/3289600.3290970

ACM International Conference on Web Search and Data Mining (WSDM ’19),
February 11–15, 2019, Melbourne, VIC, Australia. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3289600.3290970

1 INTRODUCTION
A knowledge Graph (KG), aka a heterogeneous information net-
work, represents different types of relations between various kinds
of entities as a graph with meaningful labels. Relevance search is
an established task over KGs [4, 6, 8, 11, 13–15, 17, 18, 20, 21, 23].
It has found application in Web search, recommender systems, and
many other domains. Given a query entity in a KG, the problem is
to find its most relevant entities in the graph. For example, a user
may search the KG in Fig. 1 for actors relevant to Frank Oz.

Relevance search is challenging mainly due to the ambiguities in
queries. Users may have different kinds of hidden relevance behind
a query entity. For example, by querying a director Frank Oz, a user
may seek: (1) actors starring in movies directed by him, (2) actors
starring in comedies (but not other genres of movies) directed by
him, or (3) actors starring in movies that star him as he is also
an actor. To resolve ambiguity, [4, 20, 23] assume the intent of a
query can be characterized by a set of meta-paths. Their relative
importance is learned from user preference, e.g., a small number of
user-provided examples of relevant entities [4, 23]. A meta-path is
a path at the schema level, consisting of an alternating sequence of
entity types and relation types. For example, assume the following
three meta-paths are predefined for Fig. 1:

P1 : Director
directed
−−−−−−−−→ Film

acted_in
←−−−−−−−− Actor ,

P2 : Director
directed
−−−−−−−−→ Comedy

acted_in
←−−−−−−−− Actor ,

P3 : Actor
acted_in
−−−−−−−−→ Film

acted_in
←−−−−−−−− Actor .

(1)

They correspond to the above-mentioned three intents. If a user
provides Steve Martin and Bill Murray as examples, we will
know that P1 and P2 better characterize the user’s intent because
the query entity and user-provide examples are connected by paths
in the KG that follow P1 and P2 but not P3. Therefore, Kevin
Kline will be returned as the top-ranked answer entity as it is also
connected to the query entity by a path that follows P1 and P2.
However, relying on predefined meta-paths, such methods could
hardly scale to a schema-rich KG like DBpedia and YAGO, where
thousands of types of entities and relations are involved.

https://doi.org/10.1145/3289600.3290970
https://doi.org/10.1145/3289600.3290970

Frank Oz
type:{Director, Actor}

Bill Murray
type:{Actor, Producer}

Bowfinger
type:{Comedy}

Steve Martin
type:{Actor, Writer}

The Score
type:{Thriller, Film}

Robert De Niro
type:{Actor, Producer}directed

directed

acted_in

acted_in

Hey, Cinderella!
type:{Musical Film, Film}

Jim Henson
type:{Actor, Producer}

acted_in

acted_in

Little Shop of Horrors
type:{Comedy, Film}

directed
acted_in

acted_in

In & Out
type:{Comedy, Film}

Kevin Kline
type:{Actor, Singer}directed

acted_in

Figure 1: A running example of KG.

To extend this line of work to schema-rich KGs which are be-
coming increasingly popular, we propose a new approach called
RelSUE. Its novelty is threefold, compared with existing methods.

• RelSUE automatically searches a KG for diversified signifi-
cant meta-paths that best characterize the relevance of the
user-provided examples to the query entity. It overcomes
the shortcoming of relying on predefined meta-paths [4, 8,
18, 20, 23] which are impracticable for schema-rich KGs.
• RelSUE leverages distance and degree-based heuristics to dy-
namically reduce the search space and scale to large schema-
rich KGs. It breaks through the limitation of bounded ex-
haustive search [6, 11, 21] which lose the expressiveness to
represent the intents of complex queries.
• RelSUE exploits all the many types of entities and relations in
a schema-rich KG, and performs reasoning to infer missing
types and remove the side effect of semantically duplicate
meta-paths. It has greater potential to accurately capture the
intent of a query than those being restricted to single-typed
entities [6, 15, 21] or disregarding relation types [13, 14].

Our proposed RelSUE outperforms several state-of-the-art methods
in an extensive experiment based on two large schema-rich KGs.

The paper is structured as follows. Section 2 discusses related
work. Section 3 formulates the problem. Section 4 describes RelSUE.
Section 5 reports experiments. Section 6 concludes the paper.

2 RELATEDWORK
2.1 Relevance Search
Early methods adopt random surfer models [2, 3, 10]. They define
the relevance of an entityv to a query entityq as the stationary prob-
ability that a random surfer starting from q is at v . This probability
is equivalent to a linear combination of the probabilities over all the
paths from q to v . However, different types of paths have different
semantics, implying different kinds of relevance. The semantics
of a path can be represented by the meta-path it follows. Path-
Sim [20] considers a linear combination of the probabilities only
over the paths that follow predefined meta-paths which are manu-
ally weighted. Users can choose appropriate semantics and obtain
more accurate results by specifying meta-paths and assigning them
different weights. Weights can also be learned from user-provided
examples of relevant entities [4, 23]. PReP [18] extends PathSim and
represents cross-meta-path synergy by a generative model that goes
beyond a linear combination of meta-paths. With a similar goal,
Huang et al. [8] generalizes meta-path to meta-structure which is a
directed acyclic graph.

Discussion. The above methods could not fit schema-rich KGs
because they require predefined meta-paths (or meta-structures). It
is difficult for a non-expert user to specify appropriate meta-paths
by retrieving from thousands of types of entities and relations in
a schema-rich KG. It is also impracticable for domain experts to
predefine meta-paths for all types of information needs that users
may have over a schema-rich KG.

To address the problem, PRA [11] and RelSim [21] automati-
cally enumerate all possible length-bounded meta-paths. FSPG [15]
greedily selects a subset of important meta-paths. Fang et al. [6]
generalizes meta-path to meta-graph, and enumerates all possi-
ble size-bounded meta-graphs. With these methods, meta-paths
(or meta-graphs) are not required to be predefined. However, as
the number of possible meta-paths grows exponentially with their
length, the length bound has to be set very small for schema-rich
KGs. That would fail to represent the intents of complex queries.

Discussion. Our approach belongs to this line of research, but is
specifically designed for schema-rich KGs. It dynamically searches
for length-unbounded significant meta-paths that best characterize
the relevance of the user-provided examples to the query entity,
and its implementation is scalable to large KGs having thousands of
types of entities and relations. Rather than being restricted to single-
typed entities [6, 21] or heuristically transforming multi-typed
entities into single-typed [15], our approach exploits all the types
of an entity in meta-path search. This increases expressiveness,
though it may lead to semantically duplicate meta-paths as a side
effect; for deduplication, reasoning is performed in our approach.

Recently, KG embedding techniques have gained much attention.
They represent entities and relations in a low-dimensional con-
tinuous vector space [22]. Although one can simply measure the
relevance of an entity to a query entity by calculating the distance
between their vectors, a more promising strategy is to directly learn
an embedding model for relevant entity pairs. ProxEmbed [13] and
D2AGE [14] adopt this idea. They sample paths between each pair
of entities based on random walks, and use entity types as features.

Discussion. Although these methods can work on a schema-
rich KG, their practicability would be debatable. They have many
parameters to learn and hence to achieve good results, they need
a large number of training examples which a user is unlikely to
provide for a search task. Another concern is their running time,
which may cause intolerable delays in user interaction. In fact, they
are more suitable for offline tasks like link prediction where a large
number of training examples are available. For relevance search,
our approach is more suitable due to its quick response and better
performance given a small number of user-provided examples.

2.2 Entity Set Expansion
Entity set expansion (ESE) is to find entities that are similar to a
given small set of seed entities. Lim et al. [12] trains a classifier by
learning a support vector machine from seed entities. Features are
shortest-path distance from distinct types of entities. MP_ESE [25]
heuristically finds a set of important meta-paths that connect many
pairs of seed entities. Thesemeta-paths are supposed to also connect
seed entities to their similar entities. ESER [24] extendsMP_ESE and
additionally weights meta-paths by their discriminability. Weights

can also be learned from seed entities [5]. A similar line of research
is termed query by example [7, 9, 16].

Discussion. These methods can be adapted for relevance search
in our context, by treating user-provided examples as seed entities
to be expanded. However, the query entitymay have to be ignored in
ESE; this disconnection between the query entity and user-provided
examples may distort the interpretation of the user’s intent.

3 PROBLEM
3.1 Preliminaries
Let T and R be the set of all entity types and the set of all relation
types, respectively. Entities and their relations to each other are
represented as a knowledge graph.

Definition 3.1 (Knowledge Graph). A knowledge graph (KG) is a
directed labeled graph denoted by G = ⟨V ,E,Φ,Ψ⟩ where
• V is a set of entities as nodes in the graph,
• E is a set of directed edges in the graph representing binary
relations between entities,
• Φ : V 7→ P(T) is a labeling function that assigns each entity
v ∈ V a set of entity types Φ(v) ⊆ T , where P(T) represents
the power set of T , and
• Ψ : E 7→ R is a labeling function that assigns each edge
e ∈ E a relation type Ψ(e) ∈ R.

The small KG in Fig. 1 is used as a running example in this paper.
Relation types, entity types, and their subsumption relationships

to each other form the schema of a KG.

Definition 3.2 (Schema of KG). For a KG G = ⟨V ,E,Φ,Ψ⟩, its
schema is a triple ⟨TG ,RG ,⊑G ⟩ where
• TG ⊆ T is the set of entity types that appear in G:

TG =
⋃
v ∈V

Φ(v) , (2)

• RG ⊆ R is the set of relation types that appear in G:

RG =
⋃
e ∈E
{Ψ(e)} , (3)

• ⊑G⊆ (TG × TG) represents the subsumption relationships
between entity types, which is reflexive and transitive.

For example, we define Comedy ⊑G Film in the schema of Fig. 1.
We call G a schema-rich KG if its schema contains many (e.g.,

more than hundreds of) entity types and/or relation types. Oth-
erwise, G is schema-simple. DBLP is a typical schema-simple KG,
compared with schema-rich KGs like DBpedia and YAGO which
contain thousands of entity and relation types.

In G, a path is written as v0
e1
−−→ v1

e2
−−→ · · ·

el
−−→ vl . The edges

in a path are not required to all go the same direction. To consis-

tently use right arrows, we rewrite
e
←− in the form of

e−1
−−−→, subject

to Ψ(e−1) = Ψ−1(e) which represents the converse of Ψ(e). For
example, the following path is present in Fig. 1:

Frank Oz
directed
−−−−−−−−→ In & Out

acted_in−1
−−−−−−−−−→ Kevin Kline . (4)

Given a path in a KG, by substituting the entities in the path
with their types, we obtain a meta-path at the schema level.

Definition 3.3 (Meta-Path [20]). Given a KG G and its schema
⟨TG ,RG ,⊑G ⟩, a meta-path P is an alternating sequence of entity
types and relation types:

P : T0
R1
−−→ T1

R2
−−→ · · ·

Rl
−−→ Tl , (5)

where T0, . . . ,Tl ∈ TG are entity types, R1, . . . ,Rl ∈ RG are re-
lation types (or their converses), and l is the length of P. A path
v0

e1
−−→ v1

e2
−−→ · · ·

el
−−→ vl in G is said to follow P if

∀0 ≤ i ≤ l , Ti ∈ Φ(vi) ,

∀1 ≤ j ≤ l , Rj = Ψ(ej) .
(6)

For example, the path in Eq. (4) follows P1 and P2 in Eq. (1).

3.2 Problem Statement
Relevance search takes a query entity as input, and returns top-
ranked entities in a KG that are most relevant to the query entity.

Definition 3.4 (Relevance Search). Given a KG G = ⟨V ,E,Φ,Ψ⟩,
let rel : (V × V) 7→ [0, 1] be a relevance function. For u,v ∈ V ,
rel(u,v) returns the relevance of v to u. The problem of relevance
search is to find k top-ranked answer entities in V that are most
relevant to a query entity q ∈ V w.r.t. rel.

Relevance search is challenging because rel is hidden and dy-
namic, varying according to users and queries. Similar to [23], we
assume a user provides not only a query entity but also a small
number of answer entities as examples. Our focus is then to learn
the most likely rel from user-provided examples.

Definition 3.5 (Relevance Search by Examples). Let Λ ⊆ V be a
set of user-provided examples, and define Λ = V \Λ. We transform
Definition 3.4 into finding rel such that

∀λ ∈ Λ,v ∈ Λ, rel(q, λ) ≥ rel(q,v) . (7)

For our running example in Fig. 1, we define q = Frank Oz and
Λ = {Steve Martin, Bill Murray}. All the other entities in the
graph comprise Λ, in which Kevin Kline is the best answer entity.

4 APPROACH
4.1 Overview of the Approach
We assume the intent of a query can be characterized by a linear
combination of a set of n meta-paths: {P1, . . . ,Pn }. For a candidate
entity v ∈ V , its relevance to the query entity q is calculated by

rel(q,v) =
n∑
i=1

wi · γ (q,v |Pi) , (8)

where wi is the weight of Pi , and γ (q,v |Pi) measures the rele-
vance of v to q w.r.t. Pi . In particular, γ (q,v |Pi) = 0 if none of the
paths from q to v follow Pi . The specific implementation of γ is or-
thogonal to our research contribution; various measures have been
proposed in the literature [11, 17, 19, 20]. We choose PCRW [11] as
our γ . It calculates the probability of reachingv from q by a random
walk along the paths in G that follow Pi .

In Eq. (8), two problems remain to be solved.
First, in a schema-rich KG, there can be thousands or even mil-

lions of kinds of meta-paths. It is resource-consuming, if not im-
possible, to use all of them in Eq. (8) as done in [6, 11, 21] while

users expect answers in real time. Given so many possibilities, it is
also impracticable to request a user to manually configure proper
meta-paths as assumed in [4, 8, 18, 20, 23]. In Section 4.2, we will
introduce how to automatically and efficiently search for n diver-
sified significant meta-paths that best characterize the intent of a
query. Such a quick yet accurate preselection is critical to the design
of a scalable meta-path based method for schema-rich KGs, and is
regarded as our major technical contribution.

Second, the weights of the selected n meta-paths are to be au-
tomatically determined. In Section 4.3, we will describe how to
learn the weights from user-provided positive examples along with
automatically generated negative examples. For Eq. (8) we choose
a simple linear combination because a user is unlikely to provide
many examples for learning a complex model.

4.2 Meta-Path Search
We aim to preselect n diversified significant meta-paths that best
characterize the intent of a query. We assess the significance of
each meta-path based on user-provided examples, and select n top-
ranked ones. The selection is diversified by removing duplicate
meta-paths that represent equivalent query-specific semantics. To
implement these ideas on a large schema-rich KG, we design two
algorithms: exhaustive search and heuristic search.

4.2.1 Significance of Meta-Path. According to Definition 3.5, a
good relevance function rel is expected to return larger values
for Λ than Λ. In Eq. (8), rel is decomposed into a linear combina-
tion of γ over n meta-paths. So a good meta-path that accurately
characterizes the intent of a query is one based on whichγ produces
higher relevance for Λ than Λ. Therefore, we define the significance
of a meta-path P as follows:

sig(P|q,Λ) = βl
1

|Λ| · |Λ|

∑
λ∈Λ

∑
v ∈Λ

I(γ (q, λ |P) − γ (q,v |P)) , (9)

where l is the length of P, β is a decay factor for penalizing long
overfitted meta-paths, and I is an indicator function:

I(γ (q, λ |P) − γ (q,v |P)) =

{
1 if γ (q, λ |P) > γ (q,v |P) ,
0 if γ (q, λ |P) ≤ γ (q,v |P) .

(10)

Note that Λ can be a very large set, but the computation of sig
typically involves a mere limited subset because γ (q,v |P) > 0 only
if v is reachable from q via a path inG that follows P. Also for this
reason, we have sig(P|q,Λ) > 0 only if at least one entity in Λ is
reachable from q via a path in G that follows P.

4.2.2 Selection of DiversifiedMeta-Paths. Twometa-paths are some-
how indistinguishable if they are followed by the same set of paths
in G, e.g., the following two meta-paths in Fig. 1:

P4 : Director
directed
−−−−−−−−→ Thriller

acted_in
←−−−−−−−− Actor ,

P5 : Director
directed
−−−−−−−−→ Thriller

acted_in
←−−−−−−−− Producer .

(11)

In such a case, ∀v ∈ V , γ (q,v |P4) is equal (or close) to γ (q,v |P5)
for typical measures of γ . In this sense, they characterize the intent
of this particular query from practically (nearly) equivalent angles
of semantics. Such semantically duplicate meta-paths widely exist
in schema-rich KGs where an entity has many and various types.

Removing them will improve the diversity of the n selected meta-
paths, and may form a more thorough understanding of the query.

Definition 4.1 (Equivalence between Meta-Paths). For a query
entity q, two meta-paths Pi and Pj are q-equivalent, denoted by
Pi ∼q Pj , if they are followed by the same set of paths starting
from q in G.

This equivalence relation is specific to q. For a different query
entity q′, two q-equivalent meta-paths may be followed by different
paths starting from q′ and hence be not q′-equivalent.

Instead of simply choosing the n most significant meta-paths, we
additionally require the selected meta-paths not to be q-equivalent.
The preselection of n diversified significant meta-paths can be for-
mulated as a multidimensional 0-1 knapsack problem (MKP):

to maximize
m∑
i=1

yi · sig(Pi |q,Λ) ,

subject to
m∑
i=1

yi ≤ n ,

yi + yj ≤ 1 for all i , j and Pi ∼q Pj ,
yi ∈ {0, 1} for all 1 ≤ i ≤ m ,

(12)

where m is the number of candidate meta-paths, and yi is a bi-
nary variable indicating whether Pi is selected (yi = 1) or not
(yi = 0). This MKP is non-trivial becausem can be very large in
a schema-rich KG. It may even be impracticable to enumerate all
possible meta-paths as candidates. In the following we introduce
two algorithms for solving the problem.

4.2.3 Exhaustive Meta-Path Search. The first algorithm we devise
is to exhaustively enumerate all the meta-paths between q and Λ
as candidates. Other meta-paths are ignored because their sig = 0.
Then, the MKP in Eq. (12) is solved by a greedy strategy. However,
the number of possible meta-paths grows exponentially with their
length, which we have to bound for this algorithm.

In Algorithm 1, SrchP performs bidirectional search to find all
the paths between q and Λ inG that are not longer than L, denoted
by P (line 1); L is a length bound. GenMP exhaustively generates all
the meta-paths that are followed by a path in P , denoted by CMP
(line 2). For each candidate meta-path inCMP , we calculate its sig,
and sort all of them in descending order of sig (lines 3–5). To find
n diversified significant meta-paths denoted by MP , we check the
candidate meta-paths one by one (lines 6–13). In each iteration, a
meta-path Pi is added to MP only if it is not q-equivalent to any
meta-path that has been added toMP in previous iterations.

Use ofReasoning.AKGmay be incomplete.WhenG is schema-
rich, its original Φ function may assign an entity an incomplete
set of types, and hence GenMP may miss some potentially signifi-
cant meta-paths. For example, Film should be a type of Bowfinger,
which is missing in Fig. 1. We infer missing entity types by per-
forming deductive reasoning over the schema of G. Specifically, we
use the subsumption relationships between entity types (⊑G). We
offline precompute the transitive closure of ⊑G , and use it to add
missing high-level entity types. The augmented KG is materialized
and replaces the original G.

Algorithm 1: Exhaustive meta-path search.
Input: A KG G, a query entity q, a set of user-provided

examples Λ, a number n of meta-paths to select, and
a length bound L.

Output: A set of meta-pathsMP .
1 P ← SrchP(G, q, Λ, L);
2 CMP ← GenMP(P);
3 foreach Pi ∈ CMP do
4 Calculate sig(Pi |q,Λ);
5 Sort CMP in descending order of sig;
6 MP ← ∅;
7 foreach Pi ∈ CMP do
8 if Pi ∼q Pj for any Pj ∈ MP then
9 Skip Pi and continue with the next iteration;

10 else
11 MP ← MP ∪ {Pi };
12 if |MP | = n then
13 Terminate the loop;
14 returnMP ;

Optimality. MP is an optimal solution to Eq. (12) under the
length bound. To prove it, recall that q-equivalence is an equiva-
lence relation and induces a partition of CMP . Therefore, all the
feasible solutions to Eq. (12) define amatroid, which guarantees the
optimality of our greedy strategy.

Limitations. The algorithm has two limitations. First, it is diffi-
cult to choose L. A small value weakens the expressiveness of the
approach as some queries are represented by longer meta-paths. A
large value enlarges the search space to which SrchP and GenMP
may not scale. Second, it is time-consuming to calculate sig and
sort all the candidate meta-paths when there are many. We will
address these issues in the next algorithm.

4.2.4 Heuristic Meta-Path Search. To address the two limitations
of the exhaustive search algorithm, in our second algorithm, the
length of meta-paths is not explicitly bounded, but the search space
is reduced heuristically. The idea is to perform unidirectional search
starting from q, and iteratively expand a search tree which is an
abstract ofG at the schema level. As illustrated in Fig. 2, each node
(called a tree-node) represents a set of entities of the same type
denoted by Rep, and each edge (called a tree-edge) represents a set
of relations of the same type. The search is terminated after finding
n diversified significant meta-paths; each corresponds to a path
starting from the root in the search tree. For example, the path to
Actor in the upper right of Fig. 2 corresponds to P2 in Eq. 1.

In Algorithm 2, a search tree ST is initialized with q as the
root (line 1). It is iteratively expanded (lines 2–16) until it is fully
expanded (line 3) or n diversified significant meta-paths are ac-
cepted (lines 15–16). In each iteration, SelTN selects the most
promising leaf tree-node to expand, denoted by stn (line 4). Ex-
pST expands stn and returns its child tree-nodes (line 5). For each
of these new tree-nodes, referred to as tn (line 6), its promise
is evaluated by EvalTN (line 7). If Rep(tn) overlaps with Λ, e.g.,
Rep(Actor) ∩ Λ = {Steve Martin, Bill Murray} in our running
example, a new meta-path Pi is generated by GetMP, which corre-
sponds to the path in ST from the root to tn and has a non-zero

Algorithm 2: Heuristic meta-path search.
Input: A KG G, a query entity q, a set of user-provided

examples Λ, a number n of meta-paths to select, and
a significance threshold τ .

Output: A set of meta-pathsMP .
1 Initialize a search tree ST with q as the root;
2 MP ← ∅;
3 while ST can be expanded do
4 stn ← SelTN(ST);
5 TN ← ExpST(stn);
6 foreach tn ∈ TN do
7 EvalTN(tn);
8 if tn contains entities in Λ then
9 Pi = GetMP(tn);

10 if sig(Pi |q,Λ) ≥ τ then
11 if Pi ∼q Pj for any Pj ∈ MP then
12 Skip tn and continue with the next

iteration;
13 else
14 MP ← MP ∪ {Pi };
15 if |MP | = n then
16 Terminate the loop;
17 returnMP ;

value of sig (lines 8–9). If sig(Pi) reaches a predefined threshold τ
(line 10), Pi is called a sufficiently significant meta-path, and is
added to MP only if it is not q-equivalent to any meta-path that
has been added to MP in previous iterations (lines 11–14). In the
following we elaborate several key steps in the algorithm.

Expansion (ExpST). A tree-node stn is expanded in two steps.
(1) All the edges incident from/to Rep(stn) inG , except those leading
to a cycle, are grouped according to their relation types.Within each
group identified by a distinct relation type r ∈ RG , the neighbors
of Rep(stn) in G are denoted by

Nbr(Rep(stn), r) = {v ∈ V : ∃u ∈ Rep(stn), (u r
−→ v) ∈ E} . (13)

(2) One or more new tree-nodes are generated from Nbr(Rep(stn), r)
and connected to stn via new tree-edges representing r . Each new
tree-node represents a distinct type of entities in Nbr(Rep(stn), r).

It is unnecessary to create new tree-nodes for every type of enti-
ties in Nbr(Rep(stn), r). Two new tree-nodes tni and tnj that satisfy
Rep(tni) = Rep(tnj) correspond to q-equivalent meta-paths, e.g.,
the two tree-nodes sharing Rep = {Hey, Cinderella!} in Fig. 2.
Only one of them will be kept in ST . From the perspective of rea-
soning, it amounts to the computation of (locally) equivalent entity
types by performing inductive reasoning. This early removal of se-
mantically duplicate meta-paths also reduces the search space. Note
that when Rep(tni) , Rep(tnj), although tni and tnj correspond to
two meta-paths that are not q-equivalent, their descendants in ST
may correspond to q-equivalent meta-paths. Therefore, it is still
necessary to check for q-equivalence in the algorithm (lines 11–12).

To efficiently implement ExpST, in the adjacency list represen-
tation of G, neighbors are indexed first by relation types and then
by entity types. This index also facilitates the computation of our
measure γ , i.e., PCRW. To efficiently check for and prevent cycles,

q
Rep: {Frank Oz}

directed

directed

acted_in

directed

Film
Rep:{The Score, In & Out,

Bowfinger, Little Shop of Horrors}

Comedy
Rep:{In & Out, Bowfinger,

Little Shop of Horrors}

Thriller
Rep:{The Score}

Musical Film
Rep:{Hey, Cinderella!}

Film
Rep:{Hey, Cinderella!}

acted_in

Actor
Rep:{Kevin Kline, Steve Martin,

Bill Murray}
acted_in

acted_in

acted_in
acted_in

Producer
Rep:{Bill Murray}

Singer
Rep:{Kevin Kline}

Writer
Rep:{Steve Martin}

Figure 2: A partially expanded search tree.

for each tree-node we store not only its Rep but also the actual paths
from q to Rep in G. These paths are also useful when checking for
q-equivalence in the algorithm (lines 11–12).

Evaluation of Promise (EvalTN). SelTN selects themost promis-
ing leaf tree-node to expand. The promise of a tree-node tn, denoted
by prms(tn), is evaluated by EvalTN, which estimates the largest
significance of the meta-paths corresponding to the descendants
of tn in ST . An accurate estimation in reasonable time is difficult,
if not impossible. We propose two heuristics: distance and degree.

The first heuristic is based on shortest-path distance. Following
Eq. (9), short meta-paths from q to Λ are prioritized. Therefore, for
each entity in Λ, we calculate its smallest distance from Rep(tn);
then we calculate the average of all the entities in Λ:

prmsdist(tn) = dpth(tn)+
1
|Λ|

∑
λ∈Λ

min
v ∈Rep(tn)\{λ }

dist(v, λ) , (14)

where dpth(tn) denotes the depth of tn in ST , i.e., its distance
from the root, and dist returns the shortest-path distance between
two entities inG. The most promising tree-node has the smallest
value of prmsdist. For efficient calculation of dist, we implement
a distance oracle [1], which allows for reasonably fast distance
calculation based on certain precomputed information whose size
is much smaller than the size of materializing distances between all
pairs of entities, thereby achieving a satisfying trade-off between
time and space for handling large KGs.

The second heuristic is used when multiple leaf tree-nodes share
the smallest value of prmsdist. To break ties, we calculate the sum
of the degree of Rep(tn) in G:

prmsdeg(tn) =
∑

v ∈Rep(tn)

deg(v) , (15)

where deg(v) returns the degree of v in G, i.e., the number of
edges incident from/tov . A more promising tree-node has a smaller
value of prmsdeg. The idea behind this heuristic is twofold. First,
expanding entities having a smaller degree is computationally less
expensive. Second, more importantly, after expanding such entities,
fewer entities in Λ are reached. In other words, the corresponding
meta-paths better discriminate Λ from Λ. They are more likely to
be significant according to Eq. (9).

Use of Reasoning. Similar to the first algorithm, we perform
offline deductive reasoning to infer missing entity types. In ExpST,
as mentioned, we also perform online inductive reasoning to infer
(locally) equivalent entity types.

Optimality and Limitations. MP is not guaranteed to be an
optimal solution to Eq. (12). The selected meta-paths are divesified

Table 1: Statistics of Datasets

Entity Relation Entity Type Relation Type

DBpedia 3,480,806 13,301,510 453 645
YAGO 4,295,825 12,430,700 536,648 37

and sufficiently significant, but may not be the most significant
ones. Despite this limitation, the algorithm allows long meta-paths
and scales to large schema-rich KGs.

4.3 Relevance Learning
With n preselected meta-paths, the next step is to determine their
weights in Eq. (8). Although each meta-path can be simply weighted
by its sig value, we aim to fine-tune the weights using machine
learning. We formulate a binary classification model. An entity is
either relevant or irrelevant to q. To train the model in a supervised
manner, in addition to the user-provided positive examples Λ, we
automatically generate high-quality negative examples.

Generation of Negative Examples.We collect all the entities
in G that are reachable from q via a path that follows a preselected
meta-path. Excluding Λ from this collection, the remaining entities
form candidate entities, denoted by Cand , from which k answer
entities will be picked because Cand are more similar to Λ than
other entities inG from the perspective of meta-path. We randomly
sample a small subset of Cand as negative examples for training.
Such entities, if not positive, are high-quality negative examples
because they are what a learning model is quite uncertain about.

Model Selection. For the learning model, we choose the linear
soft-margin support vector machine which extends Eq. (8). We
configure it to penalize false negatives 50 times more than false
positives, to respect user-provided positive examples.

5 EXPERIMENTS
5.1 Datasets
We use two well-known encyclopedic schema-rich KGs: DBpedia
and YAGO in Table 1. For DBpedia (version 2016-10), we obtain its
KG from Mappingbased Objects, entity types from Instance Types,
and subsumption relationships between entity types from DBpedia
Ontology. For YAGO (version 3.1), these are obtained from yagoFacts,
yagoSimpleTypes, and yagoSimpleTaxonomy, respectively.

5.2 Queries and Labeled Answers
Most existing methods are evaluated on schema-simple KGs. Some
also use schema-rich KGs [15, 21], but the queries they use are rather
simple, most of which can be characterized by a single relation. To
perform a more extensive evaluation, we systematically create a
broad spectrum of queries according to three dimensions:

sgl/mult whether the intent can be characterized by a single
meta-path (sgl) or not (mult),

s/l whether the intent can be characterized by short meta-paths
not longer than one (s) or not (l), and

bin/rank whether candidate entities can be clearly and unam-
biguously classified as answers and non-answers (bin) or
they can only be ranked (rank).

In Table 2, for each dataset we create four groups of queries
that represent distinct combinations of the three dimensions. For

Table 2: Query Groups for DBpedia (QD) and YAGO (QY)

Query Intent sgl/mult s/l bin/rank

QD1 grapes grown in q (a chateau) sgl s bin
QD2 scientists in the same field as q

(a scientist)
sgl l bin

QD3 actors starring in many movies
directed by q (a director)

sgl l rank

QD4 players drafted by the same
team and playing in the same
position as q (a player)

mult l bin

QY 1 comedies starring q (an actor) sgl s bin
QY 2 companies founded by a

schoolmate of q (a person)
sgl l bin

QY 3 actors starring in many come-
dies directed by q (a director)

sgl l rank

QY 4 scientists as both a schoolmate
and a colleague ofq (a scientist)

mult l bin

each group we generate ten random query entities. For each query
entity we manually label a set of relevant entities, which later
in the experiment are divided into user-provided examples and
correct answer entities. Labels are binary for bin queries, and are
graded in proportion to the number of movies/comedies for rank
queries QD3/QY 3. Labels for the 80 queries are published1.

5.3 Baselines and Variants of RelSUE
We compare RelSUE with four methods that fit schema-rich KGs.
RelSim [21] is a state-of-the-art meta-path based method for rel-
evance search. ProxEmbed [13] and D2AGE [14] are two recent
embedding-based methods. ESER [24] is a state-of-the-art method
for entity set expansion which can be adapted for relevance search.

Configuration of RelSim. RelSim takes pairs of relevant enti-
ties as the input, and outputs other pairs of entities having the same
kind of relevance. To adapt RelSim for our problem, we pair the
query entity and each user-provided example as the input. For each
pair of entities it outputs where the query entity is involved, we take
the other entity in the pair as an answer entity. To automatically
generate negative examples for training, the original implementa-
tion of RelSim constructs pairs of irrelevant entities by randomly
exchanging entities between input pairs. This is meaningless in our
context because all the input pairs contain a common query entity.
Instead, we substitute user-provided examples in input pairs with
negative examples generated based on meta-paths—in the same
way they are generated in RelSUE. We generate 50 · |Λ| negative
examples for each query.

RelSim only supports single-typed entities. For DBpedia, we keep
each entity’s lowest type in the subsumption hierarchy. For YAGO,
that would lead to a highly dispersed distribution of entity types as
there are numerous types. So we keep each entity’s unique type at
the first level of the subsumption hierarchy.

RelSim enumerates all possible length-bounded meta-paths. We
use RelSimx to refer to the version that uses x as the length bound.

Configuration of ProxEmbed and D2AGE. ProxEmbed and
D2AGE take triples of entities as training examples. In each triple

1http://ws.nju.edu.cn/relevance/relsue

|Λ| = 1 |Λ|= 2 |Λ|= 3 |Λ|= 4 |Λ|= 50.0
0.2
0.4
0.6
0.8
1.0

N
D
C
G
@
10

RelSim ProxEmbed D2AGE ESER RelSUE RelSUE-E

|Λ| = 1 |Λ|= 2 |Λ|= 3 |Λ|= 4 |Λ|= 5
DBpedia

0.0
0.2
0.4
0.6
0.8
1.0

N
D
C
G
@
20

|Λ| = 1 |Λ|= 2 |Λ|= 3 |Λ|= 4 |Λ|= 50.0
0.2
0.4
0.6
0.8
1.0

|Λ| = 1 |Λ|= 2 |Λ|= 3 |Λ|= 4 |Λ|= 5
YAGO

0.0
0.2
0.4
0.6
0.8
1.0

Figure 3: Overall results of NDCG@10 and NDCG@20.

⟨q,v,u⟩, the entity v is more similar to the query entity q than
the entity u. To construct such triples, we let v be a user-provided
example, and letu be a random entity having the same type asv . As
suggested in [13], we generate 100 training triples for each query.

The embedding dimension is 10 for ProxEmbed and 16 for D2AGE,
to perform the computation in reasonable time. Other parameters
are set to their best-tuned values in [13, 14]. YAGO has too many
types of entities to be handled by ProxEmbed and D2AGE due to
their one-hot encoding of entity types. We have to only use those
at the first level of YAGO’s subsumption hierarchy.

ProxEmbed and D2AGE cannot scale to millions of entities. We
use ProxEmbedx and D2AGEx to refer to their versions that work
on the x-hop neighborhood of the query entity.

Configuration of ESER. ESER takes a set of seed entities as the
input, and outputs other entities similar to the seed entities. To adapt
ESER for our problem, we treat user-provided examples as seed
entities. ESER does not specify how it chooses an “anchor entity”
from which meta-paths are generated to connect seed entities. We
enhance ESER by assigning the query entity to the anchor entity.

ESER bounds the length of meta-paths. We use ESERx to refer
to the version that uses x as the length bound.

OtherMethods.Other recent methods [6, 15] are not compared
in our experiments for the following reasons. Fang et al. [6] only
supports symmetric entity types; i.e., the query entity and user-
provided examples are required to have the same type, which is
often violated in our context. For FSPG [15], we fail to reproduce
its results due to some unclarified details in the algorithm. We have
sent emails to its authors but have not received any response.

Variants of RelSUE. RelSUE refers to our heuristic search al-
gorithm, and RelSUE-Ex refers to our exhaustive search algorithm
that uses x as the length bound. For each query, both methods gen-
erate 50 · |Λ| negative examples for weight learning. Their number
of preselected meta-paths is set to n = 3 for DBpedia and n = 10
for YAGO. We set β = 0.9 for Eq. (9) and τ = 0.5 for RelSUE. A
parameter study is reported later to justify our setting.

Setting of Bounds (x). For each method, we choose the largest
value of x such that the computation can be performed within
minutes but not longer. They are: RelSim2, ProxEmbed2, D2AGE2,
ESER3, RelSUE-E3 (on DBpedia) or RelSUE-E2 (on YAGO).

5.4 Effectiveness Results
We use NDCG@k as our evaluation criterion.

5.4.1 Overall Results. The average NDCG@10 and NDCG@20 of
all the 40 queries on each dataset are presented in Fig. 3.

On DBpedia, RelSUE and RelSUE-E consistently outperform all
the four baselines under all the settings of |Λ|. For example, when
|Λ| = 3 which is a modest number for a user, their NDCG@10 scores

http://ws.nju.edu.cn/relevance/relsue

QD1 QD2 QD3 QD4
0.0

0.2

0.4

0.6

0.8

1.0

N
D
C
G
@
10

RelSim ProxEmbed D2AGE ESER RelSUE RelSUE-E

QY1 QY2 QY3 QY4
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: NDCG@10 on different query groups.

n=10 n=20 n=30 n=40 n=50
YAGO

0.6

0.7

0.8

0.9

1.0

diversified (n=10)

undiversified
n=5 n=10 n=15 n=20 n=25

DBpedia

0.6

0.7

0.8

0.9

1.0

N
D

C
G

@
10

diversified (n=3)

undiversified

Figure 5: Ablation study of diversification.

are fairly high—in the range of 0.93–0.95, being notably better than
ESER and largely superior to the other three methods.

On YAGO, the results are similar, except for |Λ| = 1 where
RelSUE and RelSUE-E are not the best-performing methods. When
|Λ| increases, RelSUE and RelSUE-E achieve much better results
as they can learn a more accurate relevance function from more
examples. When |Λ| = 5, the NDCG@10 of RelSUE reaches 0.88.

RelSUE and RelSUE-E perform equally well on DBpedia, showing
the effectiveness of the proposed heuristics. On YAGO, RelSUE even
largely surpasses RelSUE-E due to the poor performance of RelSUE-
E on one particular group of queries, which will be detailed in the
following section.

5.4.2 Results byQuery Groups. The results on each query group
are presented in Fig. 4. We fix |Λ| = 3 from now on.

On DBpedia, RelSUE and RelSUE-E outperform all the baselines
on all the four query groups. Specifically,QD1 are simple queries, so
all the methods achieve good results. ForQD2, ProxEmbed performs
not well because it disregards relation types. D2AGE also disregards
relation types but its more powerful non-linear expressiveness
provides compensation. ESER, though is among the better ones
on three groups, notably falls behind RelSUE on QD3 due to its
weakness in answering rank queries. RelSim, whose model is likely
to prioritize one single instead of multiple meta-paths, shows poor
performance on QD4.

On YAGO, the results are generally similar. The superior perfor-
mance of RelSUE and RelSUE-E is partially due to their capability
to exploit all the many types of entities in YAGO. We particularly
highlight QY 2, on which RelSUE is the only method that works.
Answering this group of queries relies on a meta-path of length 3,
to which RelSim, ProxEmbed, D2AGE, and RelSUE-E cannot scale
on YAGO. ESER can find this long meta-path, but its performance
is limited by its scoring function.

5.4.3 Ablation Study. We analyze the usefulness of diversification
and weight learning.

Diversification. RelSUE selects n diversified meta-paths. In
Fig. 5, when diversification is disabled, we witness a notable drop in
NDCG because undiversified q-equivalent meta-paths have overlap-
ping semantics and they collectively still miss important meta-paths.

|Λ| = 1 |Λ| = 2 |Λ| = 3 |Λ| = 4 |Λ| = 5
DBpedia

0.0

0.2

0.4

0.6

0.8

1.0

N
D
C
G
@
10

weight learning sig

|Λ| = 1 |Λ| = 2 |Λ| = 3 |Λ| = 4 |Λ| = 5
YAGO

0.0

0.2

0.4

0.6

0.8

1.0

weight learning sig

Figure 6: Ablation study of weight learning.

τ=0.0 τ=0.2 τ=0.4 τ=0.60.0
0.2
0.4
0.6
0.8
1.0

DBpedia
YAGO

β=0.6 β=0.8 β=1.00.0
0.2
0.4
0.6
0.8
1.0

DBpedia
YAGO

n=2 n=4 n=6 n=8n=100.0
0.2
0.4
0.6
0.8
1.0

N
D
C
G
@
10

DBpedia
YAGO

Figure 7: Influence of parameters on RelSUE.

|Λ| = 1 |Λ|= 2 |Λ|= 3 |Λ|= 4 |Λ|= 5
DBpedia

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
un

ni
ng

 T
im

e
(s

) RelSUE
RelSUE-E

|Λ| = 1 |Λ|= 2 |Λ|= 3 |Λ|= 4 |Λ|= 5
YAGO

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

RelSUE
RelSUE-E

Figure 8: Running time.

The gap is consistently notable when n is increased to fairly large
values. It demonstrates the usefulness of diversification.

Weight Learning. RelSUE fine-tunes the weights of preselected
meta-paths using supervised learning. One may suggest weighting
meta-paths directly by their sig values. In Fig. 6, we find learning
slightly improves NDCG when Λ contains more than one entity.

5.4.4 Parameter Study. In Fig. 7, we present the influence of the
three parameters on RelSUE, namely n, β , and τ .

Number of Preselected Meta-Paths (n). On DBpedia, NDCG
reaches a high standard very quickly when n grows. On YAGO, n is
also fairly small (< 10) at convergence. The results suggest the high
quality of the top-ranked meta-paths preselected by RelSUE.

Decay Factor (β). NDCG is low when β is small because some
important but fairly longmeta-paths are rejected. It peaks at β = 0.8
or 0.9 instead of β = 1 because in that case, some long overfitted
meta-paths are selected.

Significance Threshold (τ).On YAGO, NDCG is not highwhen
τ is small because many unimportant meta-paths are selected. How-
ever, it quickly converges to a high level when τ grows.

5.5 Efficiency Results
We report running time on a Xeon E5-2643 v4 (3.40GHz).

In Fig. 8, RelSUE and RelSUE-E are very fast on DBpedia. Both of
them complete a search task in a few seconds. RelSim and ESER are
actually even faster, using less than one second. However, taking
NDCG scores into consideration, RelSUE and RelSUE-E are more
cost-effective methods. ProxEmbed and D2AGE are relatively slow.
They typically use one or several minutes for processing a query.

On YAGO which contains much more entity types than DBpedia,
the running time of RelSUE-E increases to more than 10 seconds,
but RelSUE is still reasonably fast. Both of them use less time than
all the baselines. It demonstrates the scalability of our approach.

6 CONCLUSIONS
RelSUE is one of the first solutions to relevance search that are
specifically optimized for handling large schema-rich KGs. Building
on meta-path based relevance, it is distinguished from previous
methods by: its automated and efficient selection of expressive,
diversified, and significant meta-paths guided by user-provided
examples, and its full exploitation of multiple entity types with
reasoning support. These new technical features have made Rel-
SUE significantly outperform the state of the art in an extensive
evaluation where a broad spectrum of queries over two popular
schema-rich KGs are used. The lead is taken by using a short run-
ning time. With this scalable approach, the application of relevance
search can be extended from schema-simple KGs to more general
domains, including Web-scale search and recommendation.

One limitation of our approach is the unsatisfying performance
given very few examples provided on a YAGO-like KG, which con-
tains hundreds of thousands of types of entities. In this case, rel-
evance search is inherently difficult, but still, we intend to study
more robust heuristics or to design efficient approximate algorithms
with a performance guarantee. From another point of view, an in-
teresting question would be whether and how a relevance search
engine can actively solicit user feedback if the ambiguity of a query
is believed to not be resolvable given the current examples.

Besides, to improve the running time of our approach, one di-
rection is to offline build a certain kind of schema-level index, to
support more efficient top-ranked meta-path search.

ACKNOWLEDGMENTS
This work was supported by the NSFC (61572247, 61772264), the
EU Marie Currie K-Drive project (286348), the Six Talent Peaks
(RJFW-011) and the Qing Lan Programs of Jiangsu Province.

REFERENCES
[1] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path

distance queries on large networks by pruned landmark labeling. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2013, New York, NY, USA, June 22-27, 2013. 349–360. https://doi.org/10.1145/
2463676.2465315

[2] Lars Backstrom and Jure Leskovec. 2011. Supervised random walks: predicting
and recommending links in social networks. In Proceedings of the Forth Interna-
tional Conference on Web Search and Web Data Mining, WSDM 2011, Hong Kong,
China, February 9-12, 2011. 635–644. https://doi.org/10.1145/1935826.1935914

[3] Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou. 2004. Objec-
tRank: Authority-Based Keyword Search in Databases. In (e)Proceedings of the
Thirtieth International Conference on Very Large Data Bases, Toronto, Canada,
August 31 - September 3 2004. 564–575.

[4] Shaoli Bu, Xiaoguang Hong, Zhaohui Peng, and Qingzhong Li. 2014. Integrating
meta-path selection with user-preference for top-k relevant search in heteroge-
neous information networks. In Proceedings of the IEEE 18th International Confer-
ence on Computer Supported Cooperative Work in Design, CSCWD 2014, Hsinchu,
Taiwan, May 21-23, 2014. 301–306. https://doi.org/10.1109/CSCWD.2014.6846859

[5] Xiaohuan Cao, Chuan Shi, Yuyan Zheng, Jiayu Ding, Xiaoli Li, and Bin Wu.
2018. A Heterogeneous Information Network Method for Entity Set Expansion in
Knowledge Graph. In Advances in Knowledge Discovery and Data Mining - 22nd
Pacific-Asia Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018,
Proceedings, Part II. 288–299. https://doi.org/10.1007/978-3-319-93037-4_23

[6] Yuan Fang, Wenqing Lin, Vincent Wenchen Zheng, Min Wu, Kevin Chen-Chuan
Chang, and Xiaoli Li. 2016. Semantic proximity search on graphs with metagraph-
based learning. In 32nd IEEE International Conference on Data Engineering, ICDE
2016, Helsinki, Finland, May 16-20, 2016. 277–288. https://doi.org/10.1109/ICDE.
2016.7498247

[7] Jialong Han, Kai Zheng, Aixin Sun, Shuo Shang, and Ji-Rong Wen. 2016. Dis-
covering Neighborhood Pattern Queries by sample answers in knowledge base.
In 32nd IEEE International Conference on Data Engineering, ICDE 2016, Helsinki,
Finland, May 16-20, 2016. 1014–1025. https://doi.org/10.1109/ICDE.2016.7498309

[8] ZhipengHuang, Yudian Zheng, Reynold Cheng, Yizhou Sun, NikosMamoulis, and
Xiang Li. 2016. Meta Structure: Computing Relevance in Large Heterogeneous
Information Networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
August 13-17, 2016. 1595–1604. https://doi.org/10.1145/2939672.2939815

[9] Nandish Jayaram, Arijit Khan, Chengkai Li, Xifeng Yan, and Ramez Elmasri. 2015.
Querying Knowledge Graphs by Example Entity Tuples. IEEE Trans. Knowl. Data
Eng. 27, 10 (2015), 2797–2811. https://doi.org/10.1109/TKDE.2015.2426696

[10] Glen Jeh and Jennifer Widom. 2002. SimRank: a measure of structural-context
similarity. In Proceedings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton, Alberta,
Canada. 538–543. https://doi.org/10.1145/775047.775126

[11] Ni Lao and William W. Cohen. 2010. Relational retrieval using a combination of
path-constrained random walks. Machine Learning 81, 1 (2010), 53–67. https:
//doi.org/10.1007/s10994-010-5205-8

[12] Lipyeow Lim, Haixun Wang, and Min Wang. 2013. Semantic queries by example.
In Joint 2013 EDBT/ICDT Conferences, EDBT ’13 Proceedings, Genoa, Italy, March
18-22, 2013. 347–358. https://doi.org/10.1145/2452376.2452417

[13] Zemin Liu, Vincent W. Zheng, Zhou Zhao, Fanwei Zhu, Kevin Chen-Chuan
Chang, Minghui Wu, and Jing Ying. 2017. Semantic Proximity Search on Hetero-
geneous Graph by Proximity Embedding. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA. 154–160.

[14] Zemin Liu, Vincent W. Zheng, Zhou Zhao, Fanwei Zhu, Kevin Chen-Chuan
Chang, Minghui Wu, and Jing Ying. 2018. Distance-Aware DAG Embedding for
Proximity Search on Heterogeneous Graphs. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, February
2-7, 2018.

[15] Changping Meng, Reynold Cheng, Silviu Maniu, Pierre Senellart, and Wangda
Zhang. 2015. Discovering Meta-Paths in Large Heterogeneous Information
Networks. In Proceedings of the 24th International Conference on World Wide Web,
WWW 2015, Florence, Italy, May 18-22, 2015. 754–764. https://doi.org/10.1145/
2736277.2741123

[16] Steffen Metzger, Ralf Schenkel, and Marcin Sydow. 2017. QBEES: query-by-
example entity search in semantic knowledge graphs based on maximal aspects,
diversity-awareness and relaxation. J. Intell. Inf. Syst. 49, 3 (2017), 333–366.
https://doi.org/10.1007/s10844-017-0443-x

[17] Chuan Shi, Xiangnan Kong, Philip S. Yu, Sihong Xie, and BinWu. 2012. Relevance
search in heterogeneous networks. In 15th International Conference on Extending
Database Technology, EDBT ’12, Berlin, Germany, March 27-30, 2012, Proceedings.
180–191. https://doi.org/10.1145/2247596.2247618

[18] Yu Shi, Po-Wei Chan, Honglei Zhuang, Huan Gui, and Jiawei Han. 2017. PReP:
Path-Based Relevance from a Probabilistic Perspective in Heterogeneous Informa-
tion Networks. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17,
2017. 425–434. https://doi.org/10.1145/3097983.3097990

[19] Yizhou Sun, Rick Barber, Manish Gupta, Charu C. Aggarwal, and Jiawei Han. 2011.
Co-author Relationship Prediction in Heterogeneous Bibliographic Networks.
In International Conference on Advances in Social Networks Analysis and Mining,
ASONAM 2011, Kaohsiung, Taiwan, 25-27 July 2011. 121–128. https://doi.org/10.
1109/ASONAM.2011.112

[20] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Path-
Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information
Networks. PVLDB 4, 11 (2011), 992–1003.

[21] Chenguang Wang, Yizhou Sun, Yanglei Song, Jiawei Han, Yangqiu Song, Lidan
Wang, and Ming Zhang. 2016. RelSim: Relation Similarity Search in Schema-
Rich Heterogeneous Information Networks. In Proceedings of the 2016 SIAM
International Conference on Data Mining, Miami, Florida, USA, May 5-7, 2016.
621–629. https://doi.org/10.1137/1.9781611974348.70

[22] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge Graph
Embedding: A Survey of Approaches and Applications. IEEE Trans. Knowl. Data
Eng. 29, 12 (2017), 2724–2743. https://doi.org/10.1109/TKDE.2017.2754499

[23] Xiao Yu, Yizhou Sun, Brandon Norick, Tiancheng Mao, and Jiawei Han. 2012.
User guided entity similarity search using meta-path selection in heterogeneous
information networks. In 21st ACM International Conference on Information and
Knowledge Management, CIKM’12, Maui, HI, USA, October 29 - November 02, 2012.
2025–2029. https://doi.org/10.1145/2396761.2398565

[24] Xiangling Zhang, Yueguo Chen, Jun Chen, Xiaoyong Du, Ke Wang, and Ji-Rong
Wen. 2017. Entity Set Expansion via Knowledge Graphs. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017. 1101–1104. https://doi.org/
10.1145/3077136.3080732

[25] Yuyan Zheng, Chuan Shi, Xiaohuan Cao, Xiaoli Li, and Bin Wu. 2017. Entity
Set Expansion with Meta Path in Knowledge Graph. In Advances in Knowledge
Discovery and Data Mining - 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South
Korea, May 23-26, 2017, Proceedings, Part I. 317–329. https://doi.org/10.1007/
978-3-319-57454-7_25

https://doi.org/10.1145/2463676.2465315
https://doi.org/10.1145/2463676.2465315
https://doi.org/10.1145/1935826.1935914
https://doi.org/10.1109/CSCWD.2014.6846859
https://doi.org/10.1007/978-3-319-93037-4_23
https://doi.org/10.1109/ICDE.2016.7498247
https://doi.org/10.1109/ICDE.2016.7498247
https://doi.org/10.1109/ICDE.2016.7498309
https://doi.org/10.1145/2939672.2939815
https://doi.org/10.1109/TKDE.2015.2426696
https://doi.org/10.1145/775047.775126
https://doi.org/10.1007/s10994-010-5205-8
https://doi.org/10.1007/s10994-010-5205-8
https://doi.org/10.1145/2452376.2452417
https://doi.org/10.1145/2736277.2741123
https://doi.org/10.1145/2736277.2741123
https://doi.org/10.1007/s10844-017-0443-x
https://doi.org/10.1145/2247596.2247618
https://doi.org/10.1145/3097983.3097990
https://doi.org/10.1109/ASONAM.2011.112
https://doi.org/10.1109/ASONAM.2011.112
https://doi.org/10.1137/1.9781611974348.70
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1145/2396761.2398565
https://doi.org/10.1145/3077136.3080732
https://doi.org/10.1145/3077136.3080732
https://doi.org/10.1007/978-3-319-57454-7_25
https://doi.org/10.1007/978-3-319-57454-7_25

	Abstract
	1 Introduction
	2 Related Work
	2.1 Relevance Search
	2.2 Entity Set Expansion

	3 Problem
	3.1 Preliminaries
	3.2 Problem Statement

	4 Approach
	4.1 Overview of the Approach
	4.2 Meta-Path Search
	4.3 Relevance Learning

	5 Experiments
	5.1 Datasets
	5.2 Queries and Labeled Answers
	5.3 Baselines and Variants of RelSUE
	5.4 Effectiveness Results
	5.5 Efficiency Results

	6 Conclusions
	References

