
Is it possible to select an appropriate subset of all generated 
patterns, to achieve a good performance on recognizing
time expressions, and meanwhile provides an adjustability 
on limiting the total mistakes for fitting different precision-
recall demands of various applications?

Problem Statement
Given the candidate pattern set 𝑃, training documents 𝐷, time expression set 𝐸
and a control parameter 𝜌, Select a subset 𝑸 ⊆ 𝑷 to maximize 𝑮𝒂𝒊𝒏 𝑸 with a 
constraint 𝑪𝒐𝒔𝒕 𝑸 ≤ 𝑩.

 The gain and cost is measured by strings matched by each pattern.

𝑆𝐷 𝑝 = 𝑠𝑡𝑟 𝑖,𝑙,𝑟 𝑘=0ٿ
𝑟−𝑙 𝑝𝑘 = 𝑡𝑦𝑝𝑒 𝑡𝑜𝑘𝑒𝑛 𝑖,𝑘

 The gain of 𝑸 is defined as a coverage function on the time expression set 𝐸.

 The cost of 𝑸 is defined as summing up the mistakes caused by each pattern. 

 The total cost should not exceed a bound 𝐵 = 𝐸 ⋅ 1 − 𝜌 , where 𝜌 ∈ 0,1

 Selecting Patterns with 𝜌

Selecting an appropriate subset 𝑄 from 𝑃 to maximize the correct token 
strings matched by 𝑄 while limiting the number of total mistakes caused 
by 𝑄. A parameter 𝜌 is introduced to loosely bound the total mistakes.

 Extracting Time Expressions

Use selected patterns to extract all matching strings from 𝐷𝑡𝑒𝑠𝑡. 

 Post-processing

Merging adjacent and overlapped expressions, recognizing time ranges 
which depend on nearby expressions (e.g. “1957 and 58”).

 Newest state-of-the-art time expression recognizing approaches are 
mainly black-boxed or based on heuristic rules, which leads to the 
difficulty in understanding.

 Classic rule-based approaches rely on deterministic rules hand-
engineered by experts.

 Previous work has shown the power of token types in recognizing.

 Sequential type patterns 
can be used for extracting 
time expressions.

 But the generality of token 
types also bring mistakes.
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Comparison Methods
 Rule-based approaches: HeidelTime SUTime SynTime

 Black-box learning approaches: ClearTK UWTime TOMN

Dataset
 TempEval-3: corpus of newswire text consists 

183(train)+22(test) documents.

 WikiWars: 17(train)+5(test) Wikipedia history 
articles about war.

 Tweets: 742(train)+200(test) tweets of which 
each contains at least one time expression.
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Evaluation

TempEval-3

Method SM F1 RM F1

HeidelTime 81.34% 90.30%

SUTime 79.57% 90.32%

ClearTK 82.70% 90.23%

UWTime 83.10% 91.40%

SynTime 92.09% 94.96%

TOMN 91.58% 94.51%

PTime* 84.25% 91.58%

Evaluation Metrics
 Strict Match F1 Score (SM F1): the F1 value in 

terms that the extracted timex strictly matches 
the gold timex

 Relaxed Match F1 Score (RM F1): the F1 value 
in terms that the extracted timex overlaps 
with the gold timex

Experimental Results

WikiWars

Method SM F1 RM F1

HeidelTime 83.10% 90.30%

SUTime 76.64% 92.55%

ClearTK 83.82% 93.56%

UWTime 83.00% 92.30%

SynTime 80.11% 92.29%

TOMN 82.47% 94.25%

PTime* 87.21% 96.37%

Tweets

Method SM F1 RM F1

HeidelTime 82.05% 86.71%

SUTime 78.50% 89.77%

ClearTK 80.54% 89.59%

UWTime 78.59% 87.06%

SynTime 91.74% 95.87%

TOMN 92.56% 95.45%

PTime* 93.50% 98.53%

Introduction

 Pre-processing

Transforming documents 
to lemma/pos-tag token 
sequences, dealing with 
some special cases like 
“5days”, “Valentine Day”.

 Generating 
Candidate Patterns

Given the training 
documents 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 

automatically generate a 
pattern set 𝑃 by 
abstracting each token 
to corresponding types.

Framework

 Candidate Pattern Generation

we collect the set 𝐸 of time expressions from 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, then replacing each 

token in by its corresponding token type to get sequential patterns.

Candidate Pattern Set：𝑃 = 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑒 𝑒 ∈ 𝐸

 Token Types

Our type system contains 32 fine-grained types classified from the perspective 
of POS-tags and semantic functions. Most of the types and their corresponding 
regexs are collected from SUTime and SynTime.

 Untyped Tokens: we let the untyped tokens remain unchanged. In other 
words, we dynamically create one-token types for them.

Pattern Generation

Pattern Selection

Optimization
We apply an greedy algorithm which has been proved to have a approximation 
ratio ~0.35 and a time complexity 𝑂( 𝑃 2 𝐸 ).

𝐺𝑎𝑖𝑛 𝑄 = 

𝑒∈𝐸

max
𝑝∈𝑄

𝐶𝑜𝑣 𝑝, 𝑒 𝐶𝑜𝑣 𝑝, 𝑒 = ቐ
𝑝

𝑒
∃𝑠 ∈ 𝑆𝐷 𝑝 is a substring of 𝐸

1 otherwise

𝐶𝑜𝑠𝑡 𝑄 = 

𝑝∈𝑄

𝐶𝑜𝑠𝑡 𝑝 𝐶𝑜𝑠𝑡 𝑝 = 

𝑠∈𝑆𝐷 𝑝

ቊ
0 ∃𝑒 ∈ 𝐸, 𝑠 is a substring of 𝑒
1 otherwise
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