
Is it possible to select an appropriate subset of all generated
patterns, to achieve a good performance on recognizing
time expressions, and meanwhile provides an adjustability
on limiting the total mistakes for fitting different precision-
recall demands of various applications?

Problem Statement
Given the candidate pattern set 𝑃, training documents 𝐷, time expression set 𝐸
and a control parameter 𝜌, Select a subset 𝑸 ⊆ 𝑷 to maximize 𝑮𝒂𝒊𝒏 𝑸 with a
constraint 𝑪𝒐𝒔𝒕 𝑸 ≤ 𝑩.

 The gain and cost is measured by strings matched by each pattern.

𝑆𝐷 𝑝 = 𝑠𝑡𝑟 𝑖,𝑙,𝑟 𝑘=0ٿ
𝑟−𝑙 𝑝𝑘 = 𝑡𝑦𝑝𝑒 𝑡𝑜𝑘𝑒𝑛 𝑖,𝑘

 The gain of 𝑸 is defined as a coverage function on the time expression set 𝐸.

 The cost of 𝑸 is defined as summing up the mistakes caused by each pattern.

 The total cost should not exceed a bound 𝐵 = 𝐸 ⋅ 1 − 𝜌 , where 𝜌 ∈ 0,1

 Selecting Patterns with 𝜌

Selecting an appropriate subset 𝑄 from 𝑃 to maximize the correct token
strings matched by 𝑄 while limiting the number of total mistakes caused
by 𝑄. A parameter 𝜌 is introduced to loosely bound the total mistakes.

 Extracting Time Expressions

Use selected patterns to extract all matching strings from 𝐷𝑡𝑒𝑠𝑡.

 Post-processing

Merging adjacent and overlapped expressions, recognizing time ranges
which depend on nearby expressions (e.g. “1957 and 58”).

 Newest state-of-the-art time expression recognizing approaches are
mainly black-boxed or based on heuristic rules, which leads to the
difficulty in understanding.

 Classic rule-based approaches rely on deterministic rules hand-
engineered by experts.

 Previous work has shown the power of token types in recognizing.

 Sequential type patterns
can be used for extracting
time expressions.

 But the generality of token
types also bring mistakes.

Research Support: National Natural Science Foundation of China (No. 61772264).
Project Homepage: http://ws.nju.edu.cn/ptime

Comparison Methods
 Rule-based approaches: HeidelTime SUTime SynTime

 Black-box learning approaches: ClearTK UWTime TOMN

Dataset
 TempEval-3: corpus of newswire text consists

183(train)+22(test) documents.

 WikiWars: 17(train)+5(test) Wikipedia history
articles about war.

 Tweets: 742(train)+200(test) tweets of which
each contains at least one time expression.

A Pattern-based Approach to Recognizing Time Expressions

Wentao Ding(wtding@smail.nju.edu.cn), Guanji Gao, Linfeng Shi and Yuzhong Qu(yzqu@nju.edu.cn)

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Evaluation

TempEval-3

Method SM F1 RM F1

HeidelTime 81.34% 90.30%

SUTime 79.57% 90.32%

ClearTK 82.70% 90.23%

UWTime 83.10% 91.40%

SynTime 92.09% 94.96%

TOMN 91.58% 94.51%

PTime* 84.25% 91.58%

Evaluation Metrics
 Strict Match F1 Score (SM F1): the F1 value in

terms that the extracted timex strictly matches
the gold timex

 Relaxed Match F1 Score (RM F1): the F1 value
in terms that the extracted timex overlaps
with the gold timex

Experimental Results

WikiWars

Method SM F1 RM F1

HeidelTime 83.10% 90.30%

SUTime 76.64% 92.55%

ClearTK 83.82% 93.56%

UWTime 83.00% 92.30%

SynTime 80.11% 92.29%

TOMN 82.47% 94.25%

PTime* 87.21% 96.37%

Tweets

Method SM F1 RM F1

HeidelTime 82.05% 86.71%

SUTime 78.50% 89.77%

ClearTK 80.54% 89.59%

UWTime 78.59% 87.06%

SynTime 91.74% 95.87%

TOMN 92.56% 95.45%

PTime* 93.50% 98.53%

Introduction

 Pre-processing

Transforming documents
to lemma/pos-tag token
sequences, dealing with
some special cases like
“5days”, “Valentine Day”.

 Generating
Candidate Patterns

Given the training
documents 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔,

automatically generate a
pattern set 𝑃 by
abstracting each token
to corresponding types.

Framework

 Candidate Pattern Generation

we collect the set 𝐸 of time expressions from 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, then replacing each

token in by its corresponding token type to get sequential patterns.

Candidate Pattern Set：𝑃 = 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑒 𝑒 ∈ 𝐸

 Token Types

Our type system contains 32 fine-grained types classified from the perspective
of POS-tags and semantic functions. Most of the types and their corresponding
regexs are collected from SUTime and SynTime.

 Untyped Tokens: we let the untyped tokens remain unchanged. In other
words, we dynamically create one-token types for them.

Pattern Generation

Pattern Selection

Optimization
We apply an greedy algorithm which has been proved to have a approximation
ratio ~0.35 and a time complexity 𝑂(𝑃 2 𝐸).

𝐺𝑎𝑖𝑛 𝑄 =

𝑒∈𝐸

max
𝑝∈𝑄

𝐶𝑜𝑣 𝑝, 𝑒 𝐶𝑜𝑣 𝑝, 𝑒 = ቐ
𝑝

𝑒
∃𝑠 ∈ 𝑆𝐷 𝑝 is a substring of 𝐸

1 otherwise

𝐶𝑜𝑠𝑡 𝑄 =

𝑝∈𝑄

𝐶𝑜𝑠𝑡 𝑝 𝐶𝑜𝑠𝑡 𝑝 =

𝑠∈𝑆𝐷 𝑝

ቊ
0 ∃𝑒 ∈ 𝐸, 𝑠 is a substring of 𝑒
1 otherwise

http://ws.nju.edu.cn/ptime

