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Abstract. The widespread adoption of graph data models has enhanced
many Web applications. Among others, semantic association search is to
search an entity-relation graph for subgraphs called semantic associa-
tions that connect a set of entities specified in a user’s query; it has
proved useful in various domains. Recent research on this topic has con-
centrated on summarizing numerous search results by mining their im-
portant patterns to form an abstractive overview. However, those top-
ranked patterns may have redundancy, and their graph structure may
not be comprehensible to non-expert users. To reduce redundancy, we
present a novel framework featuring a combinatorial optimization model
to select top-k diversified patterns. In particular, we devise a new similar-
ity measure which jointly considers structural and semantic similarity to
assess the overlap between patterns. To facilitate non-expert users’ com-
prehension of a pattern, we verbalize its graph structure, transforming
it into compact and coherent English text based on a novel method for
discourse planning. Extensive experiments demonstrate the effectiveness
of our approach compared with existing methods.

Keywords: Semantic association search · Summary generation · Diver-
sity · Graph edit distance · Graph verbalization.

1 Introduction

A common type of information needs enabled by the Semantic Web is to search
an entity-relation graph (e.g., Fig. 1) for semantic associations (SAs) which
represent complex relationships between a set of entities specified in a user’s
query (called query entities). Its application exists in various domains such as
national security [20] and bioinformatics [16], e.g., to find notable SAs that
connect a number of suspect airline passengers. Typically, a SA is defined to
be a path connecting two query entities [2, 8, 14, 18], or more generally, is a
compact subgraph connecting a set of query entities [5–7, 15, 22]. For example,
given a query comprising the three people in Fig. 1, two SAs are shown in Fig. 2.

On a large entity-relation graph, numerous SAs can be found and overload
users, which can be alleviated by properly summarizing the search results. One
established approach is to aggregate SAs using their high-level abstraction called
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Fig. 1: A running example of entity-relation graph, including the types of each
entity and a set of three query entities: Alice, Bob, and Chris.
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Fig. 2: Two SAs connecting Alice, Bob, and Chris in Fig. 1.

SA pattern (SAP), which is obtained by substituting each non-query entity in a
SA with one of its types [6, 8, 18, 24]. For example, the SA x1 in Fig. 2 matches
two SAPs z1 and z2 in Fig. 3. Nonetheless, two problems remain and influence the
usability of SAP. First, in a schema-rich entity-relation graph like DBpedia for
the encyclopedic domain, the number of aggregated SAPs can still be excessive.
Previous research ranks SAPs by their frequency [6] or query relevance [24], but
simply choosing top-ranked SAPs may suffer from redundancy; e.g., z1 and z2 in
Fig. 3 are similar. Second, as users may not have expertise in reading or accessing
(Semantic Web) graphs, rather than intuitively using node-link diagram, a more
comprehensible way of presenting SAP is needed for average users.

To meet the above two challenges, our research contributions are threefold.

– We devise a new similarity measure for assessing the overlap between two
SAPs based on a variant of graph edit distance, which jointly considers the
graph structure and the semantics of graph labels (Section 3.2).

– To select a set of top-ranked SAPs that are also diversified (i.e., with limited
overlap), we model a combinatorial optimization problem and solve it using
a greedy algorithm (Section 3.1).

– To make selected SAPs more comprehensible to non-expert users, we present
a verbalization approach that transforms a SAP into compact and coherent
English text based on a novel method for discourse planning (Section 4).

We conduct extensive experiments including a user study to evaluate our pro-
posed contributions (Section 5).
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Fig. 3: Three SAPs.

2 Preliminaries

We deal with a finite directed labeled entity-relation graph denoted by G, where
each vertex is labeled with a unique entity, and each arc is labeled with a binary
relation on entities. An entity has at least one type (i.e., class). Classes are
organized into a subsumption hierarchy. For example, the entity-relation graph
shown in Fig. 1 will be used as a running example in this paper. However, real
graphs can be much larger and more heterogeneous.

A query Q consists of n query entities (n > 1). All the other entities in G
are called non-query entities. A result of Q is called a semantic association
(SA) denoted by x, which is a subgraph of G satisfying [6, 7]: (i) x is connected,
(ii) x contains all the query entities, and (iii) x is minimal, i.e., none of its proper
subgraphs satisfy (i) and (ii). The minimality of x indicates that its underlying
(undirected) graph is a tree. For example, Fig. 2 illustrates two SAs connecting
Alice, Bob, and Chris. The diameter of x, denoted by diam(x), is the largest
distance between pairs of entities in x, e.g., diam(x1) = 3 in Fig. 2.

A SA pattern (SAP) is a directed labeled graph where each vertex is labeled
with a query entity or a class, and each arc is labeled with a relation [6, 8, 18, 24].
A SA x matches a SAP z if there is a bijection between their vertices such that
(i) each query entity in x corresponds to itself in z, (ii) each non-query entity
in x corresponds to one of its types in z, and (iii) the bijection is arc-preserving
and label-preserving. For example, x1 in Fig. 2 matches z1 and z2 in Fig. 3;
x2 matches z3 as well as another SAP not shown in the figure.

3 Diversified SAP Selection

To form a compact summary of SAs, we can only select a handful of SAPs from
possibly many candidates. Rather than simply choosing top-ranked SAPs [6, 24],
we present a novel framework featuring a combinatorial optimization model to
select top-k SAPs that are diversified, which uses a new similarity measure.
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3.1 Framework

We aim to select k top-ranked SAPs that are not similar to each other. For
ranking, we follow [6] to consider frequency, which can be replaced by any other
ranking criterion. Specifically, for a set of SAs X, the frequency of a SAP z,
denoted by f(z,X), is the number of SAs in X that match z. Given a threshold
τ > 0, z is frequent if f(z,X) ≥ τ . Let Z = {z1, . . . , zm} be the set of all frequent
SAPs for X; m is the size of Z. The k SAPs will be selected from Z.

Given zi, zj ∈ Z, let sim(zi, zj) ∈ [0, 1] be the similarity between zi and zj ,
which will be detailed in Section 3.2; zi and zj are similar if sim(zi, zj) ≥ φ
where φ is a predefined threshold. For i = 1 to m, we use yi ∈ {0, 1} to represent
whether zi ∈ Z is selected (yi = 1) or not (yi = 0), and then formulate a
combinatorial optimization problem as follows:

maximize

m∑
i=1

yi · f(zi, X)

subject to

m∑
i=1

yi ≤ k

yi + yj ≤ 1 for every i 6= j and sim(zi, zj) ≥ φ .

(1)

Not more than k SAPs will be selected. The goal is to maximize the frequency
of selected SAPs, but any two similar SAPs cannot be selected together.

The formulated problem is an instance of the multidimensional 0-1 knapsack
problem (MKP), which is NP-hard and is usually solved by using a greedy algo-
rithm [12]. The idea is to iteratively select a SAP that satisfies all the constraints
and maximizes the following heuristic function:

heuristic score of zi =
f(zi, X)

|{zj ∈ (Z \ {zi}) : sim(zi, zj) ≥ φ}|+ 1
, (2)

until k is reached or Z is exhausted. Here, priority is given to SAPs that are more
important (i.e., more frequent) and are similar to fewer other SAPs. The algo-
rithm calculates sim for O(m2) pairs of SAPs, sorts the SAPs in Z in O(m logm)
time, and selects k SAPs in O(mk) time.

3.2 Similarity Measurement

We devise a new measure of similarity (sim) between SAPs which jointly consid-
ers the graph structure and the semantics of graph labels. Specifically, we define
the distance (or dissimilarity) between two SAPs as the amount of transforma-
tion that is needed to turn one of them to the other, which is related to their
graph edit distance (GED) [19]. We propose a new variant of GED, called pGED,
which better suits our application and is also computationally less expensive.
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GED Given a source graph and a target graph, the idea of GED is to transform
the source into the target by a sequence of edit operations including insertions,
deletions, and substitutions (i.e., relabeling) of vertices and arcs [19]. Each edit
operation has a cost. A sequence of edit operations comprises an edit path. The
cost of an edit path is the sum of the costs of its edit operations. An edit path
that transforms the source into the target is a complete edit path. The GED
from the source to the target is the minimum cost of any complete edit path.
GED is normally defined to be symmetric.

pGED For SAPs, we consider a variant of GED called pGED, which disal-
lows any edit operation that involves query entities because they are the focus
of a SAP. Therefore, only classes and relations can be inserted, deleted, or sub-
stituted. This also helps to reduce the search space for calculating GED. For
example, for Q = {Alice, Bob, Chris}, the pGED between z1 and z3 in Fig. 3
is the sum of the costs of the following edit operations:

1. Relabel Conference with Workshop.
2. Delete Paper along with the arcs incident from/to it.
3. Insert an arc labeled with attends from Alice to Workshop.

In pGED, we define the cost of an edit operation to be in the range of [0, 1].
The cost of insertion and deletion is fixed to 1. For a substitution which relabels a
class or a relation with another, we calculate its cost by one minus the similarity
between the old and the new labels, which is defined as follows.

– For two classes, we use wpath [25] to measure their semantic similarity which
is based on a combination of ontological distance and statistical information.
We refer the reader to [25] for details.

– For two relations, we simply calculate their discrete similarity ; i.e., the sim-
ilarity between different relations is 0.

By this way of exploiting semantics in the cost of edit operation, we readily
integrate the semantics and the graph structure of SAPs, which is an important
motivation for our proposed similarity measure underpinned by GED.

Calculation of pGED An A*-based algorithm has been presented for calcu-
lating GED [19]. We adapt it to suit the calculation of pGED by prohibiting edit
operations on query entities. The algorithm seeks a mapping between vertices
of two graphs, from which the optimum complete edit path is derived. We refer
the reader to [19] for details. Here, the adaptation is: instead of starting from
an empty mapping, we initially map all the query entities in one SAP to their
counterparts in the other. This adaptation also reduces the search space.

Similarity between SAPs Now we are ready to define sim(zi, zj). For zi with
νzi vertices and εzi arcs, and zj with νzj vertices and εzj arcs, let pged(zi, zj)
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be the pGED between zi and zj defined as above. We divide it by the following
trivial upper bound such that the result is in the range of [0, 1]:

pged(zi, zj) = max{νzi , νzj}+ εzi + εzj . (3)

As pged is often much smaller than pged, the ratio of pged to pged clusters close
to 0. To facilitate tuning the threshold φ in Eqs. (1) and (2), we define sim as

sim(zi, zj) = 1−
√
pged(zi, zj) / pged(zi, zj) . (4)

4 SAP Verbalization

To present selected SAPs in a way that is more comprehensible than node-link
diagrams [8, 14, 18], we propose a rule-based, domain-independent approach to
transform SAP into English text. Basically, each arc is expressed by a subject-
predicate-object clause consisting of lexicalized relations, classes, or query en-
tities. Our novel method for discourse planning properly aggregates and orders
clauses to improve the compactness and coherence of the generated text.

4.1 Discourse Planning

Discourse planning usually comprises two levels: sentence level which organizes
the clauses within a sentence, and document level which optimizes the relation-
ship between sentences. Recall that the underlying (undirected) graph of a SAP
is a tree. In our proposed method, at the document level, when the tree is large,
we decompose it into small subtrees having a diameter of at most 2 (diam ≤ 2).
At the sentence level, from each small subtree we generate a simple, a compound,
or a complex sentence.

Sentence-level Planning We generate a sentence from each small (sub-)tree.
We assume that some vertex vsubj in the tree has been specified as the sub-
ject of the sentence by document-level planning which we will introduce later;
document-level planning may also require another vertex vend to appear at the
end of the sentence. As the tree is small (diam ≤ 2), we exhaustively plan for
all possible cases in the following. Our goal is to generate a compact sentence.

For diam = 1, a tree consists of exactly one arc, as illustrated in Fig. 4(a).
We generate a simple sentence consisting of one clause whose subject is vsubj .

For diam = 2, a tree consists of an internal vertex vi and at least two leaf
vertices vl, vll, etc., as illustrated in Fig. 4(b). We distinguish between two cases,
depending on the position of vsubj .

– When vsubj is the internal vertex vi, we generate a compound sentence con-
sisting of clauses joined by commas and the conjunction and. These clauses
have a common subject vi, so the subject is omitted from the second clause.
Further, we order these clauses such that (i) those having a common pred-
icate are compactly aggregated into one clause, and (ii) the last clause will
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be the one whose object is vend if it is specified by document-level planning.
For example, for z3 in Fig. 3, if vsubj = Workshop and vend = Chris, we will
generate the following unlexicalized sentence after aggregation and ordering:
〈Workshop〉 〈memberOfPC〉 〈Bob〉, and 〈attends〉− 〈Alice〉 and 〈Chris〉. We
use − to represent a relation to be reversely lexicalized.

– When vsubj is a leaf vertex, say vl WOLOG, we generate a complex sentence
where the main clause expresses the arc between vl and the internal vertex vi,
and the other arcs form relative clauses with their antecedents referring
to vi. These relative clauses are aggregated and ordered also in the above-
mentioned manner. For example, for z3 in Fig. 3, if vsubj = Alice and
vend = Chris, we will generate the following unlexicalized sentence: 〈Alice〉
〈attends〉 〈Workshop〉, which 〈memberOfPC〉 〈Bob〉 and 〈attends〉− 〈Chris〉.

vi

vl
vll vievisvll

vl

(a) diam=1 (b) diam=2 (c) diam=3

vc
(d) diam=4

vievisvll

vl
vie

vc vcvc

… …

Fig. 4: An illustration of discourse planning.

Document-level Planning To verbalize a SAP, our method allows an arbi-
trary query entity (denoted by vQ) to be the subject (i.e., vsubj) of the first sen-
tence; in our implementation, vQ is set to the first query entity. When diam ≤ 2,
we directly generate a sentence using sentence-level planning with vsubj = vQ;
document-level planning is not needed. When diam > 2, we decompose the tree
into small subtrees of diam ≤ 2, and generate one sentence for each subtree; then
the goal of our document-level planning is to improve the coherence of these sen-
tences by properly specifying vsubj and vend for their sentence-level planning.
Here we exhaustively plan for two cases: diam = 3 and diam = 4, as in prac-
tice larger ones still cannot be efficiently generated by existing algorithms [6].
However, our method has the potential to be generalized.

For diam = 3, a tree consists of two internal vertices vis and vie, and at least
two leaf vertices vl, vll, etc., as illustrated in Fig. 4(c). There are two cases.

– When vQ is a leaf vertex, say vl WOLOG, we decompose the tree into two
subtrees as shown on the right side of Fig. 4(c). The first sentence is generated
using sentence-level planning with vsubj = vl and vend = vie. The second
sentence is generated under vsubj = vie, so its subject verbatim repeats the end
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of the first sentence to improve coherence [4]. For example, for z1 in Fig. 3, if
vQ = Alice, we will generate the following unlexicalized document: 〈Alice〉
〈isAuthorOf〉 〈Paper〉, which 〈acceptedAt〉 〈Conference〉. 〈Conference〉
〈memberOfPC〉 〈Bob〉 and 〈attends〉− 〈Chris〉.

– When vQ is an internal vertex, say vis WOLOG, we decompose the tree in
the same way as above and generate two sentences. The only difference is
that the first sentence is generated under vsubj = vQ = vis.

For diam = 4, a tree contains a unique central vertex vc that is not more than
two hops away from other vertices. As illustrated in Fig. 4(d), we decompose the
tree at vc into at least two subtrees. We distinguish between two classes.

– When vQ 6= vc, the first sentence is generated from the subtree containing vQ
under vsubj = vQ and vend = vc. After that, one sentence is generated from
each remaining subtree under vsubj = vc, so the subjects of these sentences
verbatim repeat the end of the first sentence to improve coherence.

– When vQ = vc, we generate one sentence from each subtree under vsubj = vc.
These sentences form coherent text as they have a common subject.

4.2 Lexicalization

Lexicalization transforms 〈· · · 〉 and 〈· · · 〉− into natural language, where 〈· · · 〉−
represents a relation to be reversely lexicalized. Our rules of lexicalization build
on [17, 21], without using any domain-specific lexicon.

To lexicalize a relation r, we categorize it by its part of speech.

– When r is a noun phrase (e.g., member of PC ), we prefix it by has (e.g., has
member of PC ). To reversely lexicalize it, we enclose it with is...of (e.g., is
member of PC of ).

– When r is a noun phrase enclosed with is...of (e.g., is author of ), we express
it as it is. To reversely lexicalize it, we express by replacing is...of with has
(e.g., has author).

– When r is the past participle form of a verb phrase (e.g., accepted at), we
prefix it by is (e.g., is accepted at). To reversely lexicalize it, we express by
its third person singular present form (e.g., accepts).

– When r is any form of a verb phrase other than past participle (e.g., attends),
we express it as it is. To reversely lexicalize it, we express by its past participle
form (e.g., is attended by).

This categorization is general enough to cover most relations in practice.
To lexicalize a class, we use indefinite article (i.e., a or an) if it is mentioned

for the first time, otherwise use definite article (i.e., the).
To lexicalize a query entity, we express it as it is.
For example, z1 in Fig. 3 is finally verbalized as follows when vQ = Alice:

Alice is author of a Paper, which is accepted at a Conference. The Conference
has member of PC Bob and is attended by Chris.
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5 Experiments

Our approach has an open-source implementation1. We conducted a blind user
study involving twenty students majoring in computer science, to test the fol-
lowing three hypotheses that evaluate our technical contributions.

1. Our proposed top-ranked diversified SAPs form a better summary for SAs
than top-ranked undiversified SAPs considered in [6].

2. In particular, our proposed pGED is more effective than a popular similarity
measure considered in previous research [9, 10, 18].

3. Our proposed discourse planning generates better document structure than
the planning considered in a state-of-the-art system [1].

5.1 Datasets and Queries

Following previous research [6–8, 14, 18], our experiments were performed on
DBpedia2. We used DBpedia’s Mappingbased Objects for entity-relation graph,
Instance Types and Instance Types Transitive for entity types, and the DBpedia
ontology for measuring semantic similarity according to [25].

We followed [7] to construct queries. We used DBpedia entities mentioned
in the training set of QALD-5 [23] as seeds. For each seed entity (e.g., Anthony
Kiedis), we submitted its name to Google, and tried to collect four related
entities that (i) “people also search for” and (ii) existed in DBpedia (e.g., Flea).
Consequently, we could construct a query consisting of n entities by randomly
choosing a seed entity and n− 1 of its related entities.

We implemented the algorithm presented in [6] to search for SAs and mine
frequent SAPs. The algorithm required configuring a diameter constraint λ and
a frequency threshold τ . Given a query, it would search the entity-relation graph
for all the SAs of diam ≤ λ, and mine their frequent SAPs satisfying f ≥ τ .
Under different configurations of n, λ, and τ , we constructed a total of 80 queries3

in the above-mentioned manner, including

– 10 queries for each n ∈ {2, 3, 4, 5} under λ = 3 and τ = 5 such that at least
10 frequent SAPs could be mined from the search results of a query, and

– 10 queries for each n ∈ {2, 3, 4, 5} under λ = 4 and τ = 100 such that at
least 50 frequent SAPs could be mined from the search results of a query.

Larger values of λ were not used due to the limited performance of the search
algorithm [6]; τ was empirically determined.

1 http://ws.nju.edu.cn/association/summ2018
2 http://wiki.dbpedia.org/dbpedia-dataset-version-2015-10
3 http://ws.nju.edu.cn/association/summ2018/query.zip
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5.2 Experiment on Diversification

Experiment Design We designed two experiments to separately test the first
and the second hypotheses. In these experiments, SAPs presented to users were
not verbalized but straightforwardly visualized as node-link diagrams.

In the first experiment, we compared our top-ranked diversified SAPs (de-
noted by DIV) with top-ranked undiversified SAPs selected by [6] (denoted by
FREQ). Both DIV and FREQ preferred more frequent SAPs, but DIV also con-
sidered diversity. In DIV, the similarity threshold was fixed to φ = 0.5. For each
of the 80 queries, DIV and FREQ separately selected five SAPs (k = 5) as two
summaries of search results, to be compared by five users who were invited to
decide which summary was preferred and then explain the decision.

In the second experiment, we tested the effectiveness of our similarity measure
pGED, compared with a popular measure used in [9, 10, 18] which, denoted by
JACCARD, measures the Jaccard similarity between sets of graph labels. The
second experiment used half of the 80 queries due to the availability of users.
For each query, three frequent SAPs z, zi, zj were selected such that pGED and
JACCARD disagreed on their relative similarity; i.e., zi and zj were considered
more similar to z by pGED and JACCARD, respectively. Five users were invited
to decide whether zi or zj was more similar to z.
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Table 1: Average pGED between SAPs Selected by DIV and FREQ
λ = 3 λ = 4

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5

DIV 0.684 0.596 0.678 0.594 0.565 0.619 0.626 0.588
FREQ 0.229 0.183 0.205 0.171 0.228 0.185 0.204 0.195
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Experiment Results In the first experiment, 319 user decisions (80%) pre-
ferred the SAPs selected by DIV, whereas only 81 (20%) favored FREQ. One-
sample t-test showed that DIV significantly outperformed FREQ under p < 0.01,
suggesting that our first hypothesis could be accepted. As detailed in Fig. 5, the
superiority of DIV was observed under all the eight configurations of λ and n.

To characterize the effectiveness of DIV, as shown in Table 1, the average
pGED between SAPs selected by FREQ was very small, and much smaller than
the one for DIV, showing the necessity of diversification and the effectiveness of
DIV. We also analyzed the explanations given by the users for their decisions,
and found that the diversity of DIV’s selection was recommended in 239 decisions
(60%); i.e., diversity was considered in most decisions. The effectiveness of DIV
was illustrated by the real example in Fig. 7, where DIV selected relatively
diverse SAPs but the SAPs selected by FREQ were much redundant.

In the second experiment, 154 user decisions (77%) agreed with pGED,
whereas only 46 (23%) agreed with JACCARD. One-sample t-test showed that
pGED significantly outperformed JACCARD under p < 0.01, suggesting that
our second hypothesis could be accepted. As detailed in Fig. 6, the superiority of
pGED was observed under all the eight configurations of λ and n.

Running Time We also tested the running time of DIV on a Xeon E3-1226v3
(3.30 GHz). For each n ∈ {2, 3, 4, 5}, we selected a query that could result in
more than 1,000 frequent SAPs under λ = 4 and τ = 100. For each query, we
used DIV to select SAPs under k = 5 from a controlled number of frequent SAPs
varying from 20 to 1,000 in 20 increments.

Most time was spent calculating pGED between pairs of SAPs to establish
similarity constraints, so the running time exhibited quadratic growth as shown
in Fig. 8. When the number of query entities was small (n ≤ 3) and hence SAP
was small, DIV took less than 6 seconds to process 1,000 SAPs. When n = 5,
more than 1 minute was used, which might be unacceptable for an interactive
system. However, for practical use, pGEDs could be calculated in parallel.

5.3 Experiment on Verbalization

Experiment Design To test the third hypothesis, we compared our verbaliza-
tion approach (denoted by PaVer) with NaturalOWL [1], which was among the
best-performing open-source systems that could process our SAP. We configured
NaturalOWL and PaVer to start verbalization from the same query entity. Nat-
uralOWL relied on external templates for lexicalizing relations, and we set it to
use ours. Therefore, the main difference between NaturalOWL and PaVer was
discourse planning, which was exactly one of our technical contributions.

For each of the 80 queries, we randomly selected a frequent SAP and used
NaturalOWL and PaVer to separately generate English text to be evaluated
by five users, who also had access to the original SAP visualized as a node-
link diagram for reference. For each text, each user was asked to complete a
questionnaire consisting of four statements about different aspects of the quality
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Fig. 8: Running time of DIV.
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of verbalization as shown in Table 2, which extended the questionnaire used
in [21]. The user’s level of agreement/disagreement on each statement was to
be responded on a five-level Likert item: 1 (strongly disagree), 2 (disagree),
3 (neither agree nor disagree), 4 (agree), 5 (strongly agree).

Experiment Results As shown in Table 3, the mean of all the 400 paired ques-
tionnaire results showed that PaVer outperformed NaturalOWL in all the four
aspects of quality. Paired t-tests suggested that the differences were statistically
significant under p < 0.01 in correctness, comprehensibility, and conciseness,
whereas the difference in accuracy was not significant. That is, NaturalOWL
and PaVer generated equally accurate descriptions for SAPs, but the text gener-
ated by PaVer was syntactically more correct, easier to comprehend, and more
concise and compact, suggesting that our third hypothesis could be accepted.

We attributed the superiority of PaVer in correctness to its proper use of
indefinite and definite articles when lexicalizing classes, and attributed its su-
periority in conciseness and comprehensibility to its use of relative clauses in
sentence-level planning and its coherence-oriented ordering in document-level
planning. All these features were not considered in NaturalOWL.

Besides, in Table 3, by breaking down the results by λ, comprehensibility
and conciseness dropped notably on both systems when increasing λ from 3
to 4, indicating room for improvement in future work. The differences between
NaturalOWL and PaVer also became larger when λ = 4, mainly because Nat-
uralOWL generated many boring simple sentences under that setting; in fact,
NaturalOWL was specifically optimized for verbalizing only a small neighbor-
hood (one or two hops) surrounding the start entity.

Table 2: Statements in the Questionnaire about Quality of Verbalization
Statement

(Correctness) The text is syntactically correct.
(Comprehensibility) The text is easy to comprehend.
(Conciseness) The text is concise and compact.
(Accuracy) The text precisely describes the informa-

tion contained in the original graph.

6 Related Work

To avoid overloading users with numerous results in SA search, [5, 7, 15, 22] present
top-ranked results which can be treated as an extractive summary. A comple-
mentary paradigm which we follow in this paper is to generate an abstractive
summary, by mining and selecting a few frequent SAPs [6, 8, 18, 24]. In [6, 24],
top-ranked SAPs are selected, which are ranked by their frequency [6] or by a
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Table 3: Mean Response to Each Statement in the Questionnaire

Statement
Overall λ = 3 λ = 4

NaturalOWL PaVer p-value NaturalOWL PaVer NaturalOWL PaVer

Correctness 3.79 3.95 2.0e−3 3.86 3.97 3.72 3.94
Comprehensibility 3.58 3.80 1.2e−4 3.81 3.91 3.35 3.68
Conciseness 3.36 3.68 6.2e−8 3.60 3.84 3.12 3.53
Accuracy 3.95 4.03 4.8e−2 3.96 4.08 3.95 3.98

combination of their size, graph centrality, and query relevance [24]. Consider-
ing there may be redundancy in the information provided by top-ranked SAPs,
[8] proposes to select dissimilar SAPs to improve diversity, but its similarity
measure can only handle path-structured SAPs. Other measures [9, 10, 18] pro-
cess more general SAPs in a heuristic way. By comparison, our pGED measure
systematically considers the cost of transforming one SAP into another, which
captures both the graph structure and the semantics of graph labels, and empiri-
cally outperforms the Jaccard measure used in [9, 10, 18].

Verbalization is another contribution of our work. Compared with [1, 3, 21],
whereas our lexicalization and aggregation build on common practice in this
research field [3, 21], our domain-independent discourse planning is novel and
is inspired by empirical language research [4]; in [3], the ordering and struc-
turing of clauses are domain-dependent, and manual configuration is required.
Compared with [1] which mainly generates simple and compound sentences, our
sentence-level planning also supports complex sentences for compactness, and
our document-level planning properly orders sentences and clauses for coher-
ence, thereby showing superiority over [1] in the experiments. A related line
of research verbalizes graph queries (e.g., SPARQL queries) [11, 13, 17]. Their
discourse planning is task-specific and not suitable for SAP in our problem.

7 Conclusion and Future Work

Towards more usable SA search, we improve its result summarization by (i) di-
versifying selected SAPs based on a new GED measure which jointly considers
structural and semantic similarity, and (ii) verbalizing SAPs based on a novel
method for discourse planning to generate compact and coherent English text.
Potential applications of our approach are not restricted to SA search. Our
framework for diversification can be adapted to diversify the results of keyword
queries on graph data [9, 10]. Our verbalization approach can be used to verbalize
graph-structured query answers, graph representation of ontologies, etc.

Future work consists of several directions. As found in the experiments, the
performance of SAP selection is not satisfying when the number of query entities
or the number of SAPs is large. We will experiment with approximate algorithms
and analyze trade-offs between quality and performance. As to the verbalization
approach, we will extend it to support larger trees and more general graph
structures. However, considering the notable fall in the comprehensibility and
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conciseness of text for larger SAPs in the experiment, it would be desirable to
discuss the applicability of verbalization to more complex cases, and to examine
other presentation techniques.
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